

The Problem Setting

- Motivation: many real-world problems are too hard to solve optimally. Need bounded-cost solution!
- Problem: initial state (I), goal states (G), and a cost bound C.
- Objective: Find a solution with cost at most C as fast as possible.

Previous Approaches

- Standard heuristic search with pruning on C
- Potential Search (PTS)¹ \rightarrow best-first search on $\frac{h}{C-a}$
- Bounded-cost Explicit Estimation Search (BEES)² \rightarrow focal search:
- open sorted by f, only nodes with $g + h \leq C$
- focal sorted by d, only nodes with $g + \hat{h} \leq C$ (\hat{h} is corrected for the observed heuristic error³)

Bounded-Cost Search Using Estimates of Uncertainty Maximilian Fickert, Tianyi Gu, Wheeler Ruml

Expected Effort

Best-first search on the expected effort:

- T(n): search effort to find a solution
- p(n): probability that n leads to a sol

 $1 = 10^{\circ}$ p = 0.

 $\begin{array}{c}
n_2 \\
n_2 \\
p = 0.25 \\
\end{array} \xrightarrow{} \quad \overleftarrow{} \quad \overleftarrow{}$

How to obtain T

- Obtaining T use distance-to-go d
- Obtaining p from belief distributions

Theoretical Ar

XES optimizes search effort, assuming

- the search explores one subtree at a time,
- subtrees are independent, and
- subtrees are abandoned after spending T(n) time.

⁴First suggested by Dobson and Haslum (HSDIP'17)

Search	Using p in BEES					
4 $\frac{T}{m}$	BEES <i>95</i> :					
p under n ution within C	- open sorted by $f,$ only nodes with $g+h\leq C$ - focal sorted by $d,$ only nodes with $g+\hat{h}\leq C$ $p(n)>2$					
→ 20	Experiments					
	Planning Domains: IPC'18	boun	ded-co	ost tr	ack	
→ 24	Coverage	GBFS	PTS	BEES	BEES95	XES
	Agricola (20)	1	0	0	0	0
F and <i>p</i> ?	Caldera (20)	8	10	10	12	13
	Caldera-split (20)	4	2	2	2	2
	DataNetwork (20)	2	0	3	3	4
	Nurikabe (20)	4	10	10	11	9
	Settlers (20)	4	5	10	11	11
	Snake (20)	4	5	4	4	5
	Spider (20)	7	11	10	10	9
	Termes (20)	11	9	11	11	13
	Sum (180)	45	52	60	64	66
	Expansions ($*10^3$)	1.93	3.93 2	2.10	2.25	1.77
nalysis	Search Domains:					
	Heavy Tile Algorithm DTS DTS DTS DTS DTS DTS DTS DT		10^1	H	eavy Vacı	<u>um Wor</u>

95%

Bounded-cost algorithms dominate GBFS; XES is best overall.

¹Stern, Puzis, and Felner 2011. ²Thayer et al. 2012.

³Thayer, Dionne, and Ruml 2011.