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Tianyi Gu (UNH) New Results in Bounded-Suboptimal Search — 3 / 20



Planning as Heuristic Graph Search

—— A*: expands the node with minimal f value
returns optimal path
B Problem Settings .
B Overview optimal search can take too long!
. - L] *
Bounded Suboptimal because it must expand every node with f < C*,
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Results

Conclusions

What if we don't have time?

1How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.
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Objective: Find a plan with cost at most wC'™ as fast as possible.
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State-of-The-Art: 1{2 EES SThayer and Ruml, 2011!

Three source of heuristic information:

Introduction

Sounded Suboptims) h: a lower bound on cost-to-go

B Problem Setting

f(n) =g(n) + h(n)

Bl DPS -

— ez traditional Ax lower bound

New Algorithms h: an estimate of cost-to-go

Results f — g(n) -+ h(n)

Comalis s unbiased estimates can be more informed

A

d: an estimate of distance-to-go (hops-to-go)
nearest goal is the easiest to find
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New Algorithms N
Results best ;. estimated w-suboptimal node with minimum d

Conclusions

node to expand next:

1. pursue the nearest goal estimated to lie within the bound
2. pursue the estimated optimal solution
3. raise the lower bound on optimal solution cost

In other words:

1. if f(bestd) < w - f(besty) then best ;

2. else if f(bestf) <w- f(besty) then best ¢
3. else best;
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X

e 1. if f<b65f(i) < w- f(besty) then best ;
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Other EES variants:
1. if f(bestd) < w - f(besty) then best ;

?
2. else—lfﬁ%beﬁvt?%—éwﬂ%beﬁﬁé—ﬂ%en—beﬁﬁ

3. else besty

see paper for more details.
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Results

penalize nodes distant to goal

p(n): the probability of finding a solution within the bound
reward nodes likely to have solution within bound
estimated by:

Conclusions

Can we adapt XES to bounded-suboptimal setting?
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hard to estimate when raising the bound is useful!
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Our Approach: 2{2 A Round-Robin Scheme
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New Algorithms open list: sorted by f

B DXES .

cleanup list: sorted by f

Results

focal and open condition: f(n) < w - fmin

Conclusions

Simple but works well!

2The More, The Merrier: Combining Heuristic Estimators for Satisficing Planning, Malte Helmert and

Gabriele Roger, AAAI, 2010.
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IPC Coverage sw = 1.5!

Introduction W) (L{J)
Bounded Suboptimal ¥p) % ~ é
New Algorithms *<E LLIIJ) (Df_) ISI<J DI: DI: D':
Results Coverage ; L O O et e e
B Experiments

Ocrmmmm  Sum (1652) 095 967 1012 | 894 982 1025 1052
M Plannin

B Search Normalized(%) 58.7 57.0 60.0 | 51.5 57.9 60.7 62.5
Conclusions Expansions 560 558 472 | 734 665 383 371

— RR-DXES and RR-d perform best overall.
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A

New Algorithms B Round-Robin on d, f, f is the next to try
mesults B Round-Robin on xe, f, f performs well in some domains

Conclusions

Still unresolved:

B When to raise bound, and when to pursue solution?
B How to best use belief distribution in bounded-suboptmal
search?

Tianyi Gu (UNH) New Results in Bounded-Suboptimal Search — 19 / 20



Questions?

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

Questions

B Questions?

Tianyi Gu (UNH) New Results in Bounded-Suboptimal Search — 20 / 20



	Introduction
	Planning as Heuristic Graph Search
	Planning as Heuristic Graph Search
	Alternatives to Optimal Search: Problem Settings
	Overview

	Bounded-Suboptimal Search
	Bounded-Suboptimal Search: The Problem Setting
	State-of-The-Art: 1/2 EES (Thayer and Ruml, 2011)
	State-of-The-Art: 2/2 DPS (Gilon, Felner, and Stern, 2016)
	Bounded-Cost: XES (Fickert, Gu, and Ruml, 2021)

	New Algorithms
	Our Approach: 1/2 Dynamic XES
	Our Approach: 2/2 A Round-Robin Scheme

	Results
	Experiments
	IPC Coverage (=1.5)
	Search Domains

	Conclusions
	Summary

	Questions
	Questions?


