New Results in Bounded-Suboptimal Search

Maximilian Fickert¹ and Tianyi Gu^2 and Wheeler Ruml²

Introduction	heuris
Heuristic Search	
Problem Settings	
Overview	
Bounded Suboptimal	
New Algorithms	
Results	
Conclusions	

euristic search: a planning approach

Introduction	
Heuristic Search	
Problem Settings	
Overview	
Bounded Suboptimal	

New Algorithms

Results

Conclusions

heuristic search: a planning approach

planning models the environment as a state space problem and finds a sequence of actions that accomplishes some objective

Introd	uction
muou	uction

Heuristic Search

Problem Settings

Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

heuristic search: a planning approach

planning models the environment as a state space problem and finds a sequence of actions that accomplishes some objective

heuristic search:

{states, actions} \rightarrow {V, E} planning problem \rightarrow find a path from s_{init} to { s_{goal} } guide graph search by a heuristic estimate of cost-to-goal

Introd	luction
muou	luction

Heuristic Search

Problem Settings

Overview

Bounded Suboptimal

New Algorithms

Results

Conclusions

heuristic search: a planning approach

planning models the environment as a state space problem and finds a sequence of actions that accomplishes some objective

heuristic search:

{states, actions} \rightarrow {V, E} planning problem \rightarrow find a path from s_{init} to { s_{goal} } guide graph search by a heuristic estimate of cost-to-goal

Planning as Heuristic Graph Search

ntroduction	Α
ntroduction	
Heuristic Search	
Problem Settings	
Overview	
Bounded Suboptimal	
New Algorithms	
Results	
Conclusions	

A*: expands the node with minimal f value returns optimal path **optimal search can take too long!** because it must expand every node with $f < C^*$, there can be many such nodes¹

¹How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.

Planning as Heuristic Graph Search

Introduction

Heuristic Search

Problem Settings
Overview
Bounded Suboptimal
New Algorithms
Results
Conclusions

expands the node with minimal f value returns optimal path optimal search can take too long! because it must expand every node with $f < C^*$, there can be many such nodes¹

What if we don't have time?

¹How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.

Tianyi Gu (UNH)

Alternatives to Optimal Search: Problem Settings

Introduction	optimal: minimize solution cost		
Heuristic SearchProblem Settings	expand every node with $f < C^*$		
Overview Bounded Suboptimal	greedy: minimize solving time		
New Algorithms	anytime: incrementally converge to optimal		
Conclusions	$\begin{array}{l} \begin{tabular}{l} \textbf{sions} \end{array} & \textbf{bounded-suboptimal:} & minimize time subject to relative cost bound (factor of optimal) & solution with $f \leq \omega \cdot C^*$ \end{array}$		
	bounded-cost: minimize time subject to absolute cost boun solution with $f \leq C$		
	contract: minimize cost subject to absolute time bound		
	utility-based: minimize function of cost and time		

Alternatives to Optimal Search: Problem Settings

Introduction	optimal: minimize solution cost	
Heuristic SearchProblem Settings	expand every node with $f < C^*$	
Overview Bounded Suboptimal	greedy: minimize solving time	
New Algorithms	anytime: incrementally converge to optimal	
Results Conclusionsbounded-suboptimal: bound (factor of optimal) solution with $f \le \omega \cdot C^*$ bounded-cost: solution with $f \le C$		
	utility function: minimize function of cost and time	

Overview

Introd	uction
	uction

- Heuristic Search
- Problem Settings
- Overview
- Bounded Suboptimal
- New Algorithms
- Results
- Conclusions

- Introduction
- Bounded-Suboptimal Search
 - EES
 - DPS
 - XES
 - New Algorithms DXES
 - RoundRobin
- Results
- Conclusions

Introduction

Bounded Suboptimal

- Problem Setting
- EES
- DPS
- XES

New Algorithms

Results

Conclusions

Bounded-Suboptimal Search

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 6 / 20

Bounded-Suboptimal Search: The Problem Setting

Bounded-Suboptimal Search: The Problem Setting

Objective: Find a plan with cost at most ωC^* as fast as possible.

Introduction	T
Bounded Suboptimal	
Problem Setting	
EES	
■ DPS	
■ XES	
New Algorithms	
Results	
Conclusions	

hree source of heuristic information:

h: a lower bound on cost-to-go f(n) = g(n) + h(n)traditional A* lower bound \hat{h} : an estimate of cost-to-go $\hat{f} = g(n) + \hat{h}(n)$ unbiased estimates can be more informed \hat{d} : an estimate of distance-to-go (hops-to-go) nearest goal is the easiest to find

Introduction
Bounded Suboptimal

Problem	Setting
---------	---------

- EES
- DPS
- XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

 $best_f$: open node giving lower bound on cost $best_{\hat{f}}$: open node giving estimated optimal cost $best_{\hat{d}}$: estimated ω -suboptimal node with minimum \hat{d}

```
Introduction
Bounded Suboptimal
Problem Setting
New Algorithms
Conclusions
                         1.
                         2.
                         3.
                         1
                         2
                         3.
```

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

 $best_f$: open node giving lower bound on cost $best_{\hat{f}}$: open node giving estimated optimal cost $best_{\hat{d}}$: estimated ω -suboptimal node with minimum \hat{d}

```
node to expand next:
```

pursue the nearest goal estimated to lie within the bound

in other words:

. if
$$\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$$
 then $best_{\hat{d}}$

Tianyi Gu (UNH)

EES

DPS XES

Results

Introduction	
Bounded Suboptimal	
Problem Setting	
EES	
■ DPS	
■ XES	
New Algorithms	
Results	
Conclusions	

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

 $\begin{array}{l} best_f: \text{ open node giving lower bound on cost} \\ best_{\hat{f}}: \text{ open node giving estimated optimal cost} \\ best_{\hat{d}}: \text{ estimated } \omega \text{-suboptimal node with minimum } \hat{d} \end{array}$

```
node to expand next:
```

- 1. pursue the nearest goal estimated to lie within the bound
- 2. pursue the estimated optimal solution
- 3.

3.

in other words:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$

ntroduction	
Bounded Suboptimal	
Problem Setting	
EES	
DPS	
XES	
lew Algorithms	
Results	

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d}

EES search strategy:

 $\begin{array}{l} best_f: \text{ open node giving lower bound on cost} \\ best_{\hat{f}}: \text{ open node giving estimated optimal cost} \\ best_{\hat{d}}: \text{ estimated } \omega \text{-suboptimal node with minimum } \hat{d} \end{array}$

node to expand next:

- 1. pursue the nearest goal estimated to lie within the bound
- 2. pursue the estimated optimal solution
- 3. raise the lower bound on optimal solution cost

in other words:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$
- 3. else $best_f$

Bounded Suboptimal

	Prob	lem	Setting
--	------	-----	---------

- EES
- DPS
- XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d} EES search strategy:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$
- 3. else $best_f$

```
Bounded Suboptimal
```

```
Problem Setting
```

- EES
- DPS
- XES

New Algorithms

Results

Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d} EES search strategy:

1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_{f})$ then $best_{\hat{d}}$ 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_{f})$ then $best_{\hat{f}}$ 3. else $best_{f}$

Other EES variants:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$
- 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_{f})$ then $best_{\hat{f}}$?
- 3. else $best_f$

see paper for more details.

Introduction

Bounded Suboptimal

- Problem Setting
- EES
- DPS
- XES
- New Algorithms
- Results
- Conclusions

Three source of heuristic information: h, \hat{h} , \hat{d} EES search strategy:

- 1. if $\hat{f}(best_{\hat{d}}) < \omega \cdot f(best_f)$ then $best_{\hat{d}}$ 2. else if $\hat{f}(best_{\hat{f}}) < \omega \cdot f(best_f)$ then $best_{\hat{f}}$ 3. else $best_f$
- Problem:
- EES does not consider the uncertainty of its estimates (brittle)

State-of-The-Art: 2/2 DPS (Gilon, Felner, and Stern, 2016)

Introduction

Bounded Suboptimal

- Problem Setting
- EES

DPS

XES

New Algorithms

Results

Conclusions

Best-first search on "potential":

 $potential = \frac{budget - cost-so-far}{cost-to-go}$

in other words:

 $ud(n) = \frac{\omega \cdot f_{min} - g(n)}{h(n)}$

State-of-The-Art: 2/2 DPS (Gilon, Felner, and Stern, 2016)

Introduction

Bounded Suboptimal

- Problem Setting
- EES
- DPS

XES

New Algorithms

Results

Conclusions

Best-first search on "potential":

 $potential = \frac{budget - cost-so-far}{cost-to-go}$

in other words:

$$ud(n) = \frac{\omega \cdot f_{min} - g(n)}{h(n)}$$

does not explicitly optimize search time

Introduction

Bounded Suboptimal

- Problem Setting
- EES
- DPS

■ XES

New Algorithms

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

Introduction

Bounded Suboptimal

Problem Setting

EES

DPS

XES

New Algorithms

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)penalize nodes distant to goal p(n): the probability of finding a solution within the bound reward nodes likely to have solution within bound

Introduction

Bounded Suboptimal

Problem Setting

EES

DPS

XES

New Algorithms

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)penalize nodes distant to goal p(n): the probability of finding a solution within the bound reward nodes likely to have solution within bound estimated by:

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 10 / 20

Introduction

Bounded Suboptimal

Problem Setting

EES

DPS

XES

New Algorithms

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)penalize nodes distant to goal p(n): the probability of finding a solution within the bound reward nodes likely to have solution within bound estimated by:

Can we adapt XES to bounded-suboptimal setting?

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 10 / 20

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Results

Conclusions

New Algorithms

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 11 / 20

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)p(n): the probability of finding a solution within the bound, estimated by:

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)p(n): the probability of finding a solution within the bound, estimated by:

New Results in Bounded-Suboptimal Search – 12 / 20

Tianyi Gu (UNH)

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)p(n): the probability of finding a solution within the estimated bound, estimated by:

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 12 / 20

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)p(n): the probability of finding a solution within the estimated bound, estimated by:

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 12 / 20

Introduction

Bounded Suboptimal

New Algorithms

DXES

RoundRobin

Results

Conclusions

Best-first search on expected search effort:

$$xe(n) = \frac{T(n)}{p(n)}$$

T(n): total search effort, estimated by d(n)p(n): the probability of finding a solution within the estimated bound, estimated by:

hard to estimate when raising the bound is useful!

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 12 / 20

Our Approach: 2/2 A Round-Robin Scheme

Introduction
Bounded Suboptimal
New Algorithms
DXES
RoundRobin
Results

Conclusions

Replace EES selection rule with Round-Robin² : **focal list:** sorted by d(EES) or ud(DPS) or xe(DXES) **open list:** sorted by \hat{f} **cleanup list:** sorted by f

focal and open condition: $f(n) < \omega \cdot f_{min}$

Simple but works well!

²The More, The Merrier: Combining Heuristic Estimators for Satisficing Planning, Malte Helmert and Gabriele Roger, AAAI, 2010.

Introduction

Bounded Suboptimal

New Algorithms

Results

 $\blacksquare Experiments$

Planning

Search

Conclusions

Results

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 14 / 20

Experiments

Introduction							
Bounded Suboptimal							
New Algorithms							
Results							
Experiments							
Planning							
■ Search							
Conclusions							

Planning Domains:

- I Implementation in Fast Downward
- Benchmarks:

IPC optimal tracks (48 domains)

Search Domains:

■ Sliding-Tile Puzzle, Vaccum World, Pancake, Racetrack

Introduction Bounded Suboptimal New Algorithms		*	S	Sc	(ES	R-DPS	<i>p-</i> 2	R-DXES
Results	Coverage	\sim		DF	â	RF	R H	RF
ExperimentsPlanning	Sum (1652)	995	967	1012	894	982	1025	1052
Search	Normalized(%)	58.7	57.0	60.0	51.5	57.9	60. <i>1</i>	62.5
Conclusions	Expansions	569	558	472	734	665	383	371

 \rightarrow RR-DXES and RR-d perform best overall.

Search Domains

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 17 / 20

Search Domains

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 17 / 20

Search Domains

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 17 / 20

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

■ Summary

Conclusions

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 18 / 20

Summary

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

Summary

What to do for bounded-suboptimal search:

- Weighted-A* is the first thing to try
- **Round-Robin on** d, \hat{f} , f is the next to try
 - **Round-Robin on** xe, \hat{f} , f performs well in some domains

Summary

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

Summary

What to do for bounded-suboptimal search:

- Weighted-A* is the first thing to try
- **Round-Robin on** d, \hat{f} , f is the next to try
 - **Round-Robin on** xe, \hat{f} , f performs well in some domains

Still unresolved:

- When to raise bound, and when to pursue solution?
- How to best use belief distribution in bounded-suboptmal search?

Questions?

Introduction

Bounded Suboptimal

New Algorithms

Results

Conclusions

Questions

Questions?

Tianyi Gu (UNH)

New Results in Bounded-Suboptimal Search – 20 / 20