

SAARBRÜCKEN GRADUATE SCHOOL OF COMPUTER SCIENCE

The Problem Setting

- Motivation: many real-world problems are too hard to solve optimally. Need bounded-suboptimal solution!
- Input: initial state (I), goal states (G), and a suboptimality bound $\omega \geq 1$.
- Objective: Find a solution with cost at most $\omega \cdot C^*$ as fast as possible.

Previous Approaches

Weighted A*

- Explicit Estimation Search (EES)¹ \rightarrow focal search:
- *cleanup* sorted by f, all generated nodes
- open sorted by \hat{f} , only nodes with $g + \hat{h} \leq \omega \cdot f_{min}$
- focal sorted by d, only nodes with $g + \hat{h} \leq \omega \cdot f_{min}$ (\hat{h} is corrected for the observed heuristic error²)
- Dynamic Potential Search (DPS)³
- \rightarrow best-first search on $\frac{\omega \cdot f_{min} g(n)}{h(m)}$

New Results in Bounded-Suboptimal Search Maximilian Fickert, Tianyi Gu, Wheeler Ruml

New Algorithms: 1/2 Dynamic Expected Effort Search (DXES)

Best-first search on the expected effort:⁴ $\frac{T}{p}$

- T(n): search effort to find a solution under n
- p(n): probability that n leads to a solution within estimated bound

$$\begin{array}{c} n_1 \\ n_1 \\ p = 0.5 \end{array} & \rightsquigarrow 20 \end{array}$$

How to obtain T and p?

- Obtaining T use distance-to-go d
- Obtaining p from belief distributions

hard to estimate when raising the bound is useful!

New Algorithms: 2/2 A Round-Robin Scheme

Replace EES selection rule with alternating queues⁵ :

- open list: sorted by \hat{f}
- cleanup list: sorted by f
- focal list: sorted by d(EES) or ud(DPS) or xe(DXES)

⁴First suggested by Dobson and Haslum (HSDIP'17) ⁵Helmert and Roger, 2010

 $n_2 T = 6$ $\sim p = 0.25 \sim 24$

Sum (1652) Normalized(%) Expansions

Search Domains:

(see paper for more results)

- Weighted-A* is the first thing to try
- Round-Robin on d, \hat{f} , f is the next to try

Still unresolved:

Experiments

Planning Domains: IPC optimal tracks (48 domains)

RR-DXES	RR-d	RR-DPS	DXES	DPS	EES	*WA
1052	1025	982	894	1012	967	995
62.5	60.7	57.9	51.5	60.0	57.0	58.7
371	383	665	734	472	558	569

RR-*d* and RR-DXES perform best overall.

Conclusion

• Round-Robin on xe, \hat{f} , f performs well in some domains

• When to raise bound, and when to pursue solution? • How to best use belief distribution in bounded-suboptmal search?

¹Thayer and Ruml, 2011.

²Thayer, Dionne, and Ruml, 2011.

³Gilon, Felner, and Stern, 2016.