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Environments:

single agent

discrete state, discrete action

fully observability

online planning: interleaving planning and execution

deterministic state transition

Real-time heuristic search:

can’t wait until have full plan

return the next action within a given time bound
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An example: path finding

agent

goal

search frontier

best

top level action

online planning: interleaving search and action execution

“receding horizon control”
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Challenge:

limited time → limited lookahead → value uncertainty

This work:

A beginning of rational approach for real-time planning

Borrowing idea from Bayesian RL

Simplified setting

Put focus on bounded rationality
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f̂ is expected value

Should an agent expand nodes under α or β?

f̂ is not the answer: what to do?

want to maximize value of information

need to consider uncertainty of estimates
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f̂ is expected value

Should an agent expand nodes under α or β?

Our approach: expand nodes which minimize expected regret

E




f

∗(α)− f∗(β)
︸ ︷︷ ︸

our regret

∣
∣ f∗(β) < f∗(α)

︸ ︷︷ ︸

in cases when α not best
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How to best use limited number of expansions?
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How to best use limited number of expansions?

estimate value uncertainty

one option: uncertainty correlate distance-to-go

see details in Mitchell et al., AAAI 2019

use the estimate to guide search

see details in Mitchell et al., AAAI 2019

can use data to estimate distributions

see details in Fickert et al., AAAI 2020

This PRL-20 paper:

comparison against other methods that try to exploit

value uncertainty

visualization of distributions estimated from data
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What does the actual cost-to-go value uncertainty distribution

look like?

Beliefs are different from domain to domain
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Nancy outperforms conventional approaches
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■ Nancy starts to explore an optimal way of doing online

heuristic search

■ Nancy is competitive or better than conventional approaches

More broadly:

■ Setting isolates the issue: unlike in MDPs or RL, all

uncertainty is due to bounded rationality

■ Metareasoning about uncertainty pays off, even for

deterministic domains!
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