Robust Exploration with Tight Bayesian Plausibility Sets

Reazul Hasan Russel, Tianyi Gu, Marek Petrik

Summary

Plausibility Sets

Empirical Evaluation

Markov Decision Processes (MDPs) provide a powerful framework for modeling sequential decision problems under uncertainty.
Exploration of poorly understood states and actions is important for long-term planning and optimization.

• Optimism in the face of uncertainty

• L_1 -constrained (s, a)-rectangular ambiguity set for state $s \in S$ and action $a \in A$ is defined as:

 $\mathcal{P}_{s,a} = \{ \boldsymbol{p} \in \Delta^S : \| \boldsymbol{p} - \bar{\boldsymbol{p}}_{s,a} \|_1 \leq \psi_{s,a} \}.$ **Note:** $\bar{\boldsymbol{p}}_{s,a}$ is the **nominal** transition probability.

• We evaluate the performance in terms of worst-case *cumulative regret* incurred by the agent up to time T for a policy π_l^* :

$$\sup \left[\sum_{s \in \mathcal{S}} p_0(s) \left(V^*(s) - V^{\pi_l^*}(s) \right) \right]$$

• We compare OFVF with BayesUCRL and OFVF.

(OFU) is the main driving force of exploration for many RL algorithms.

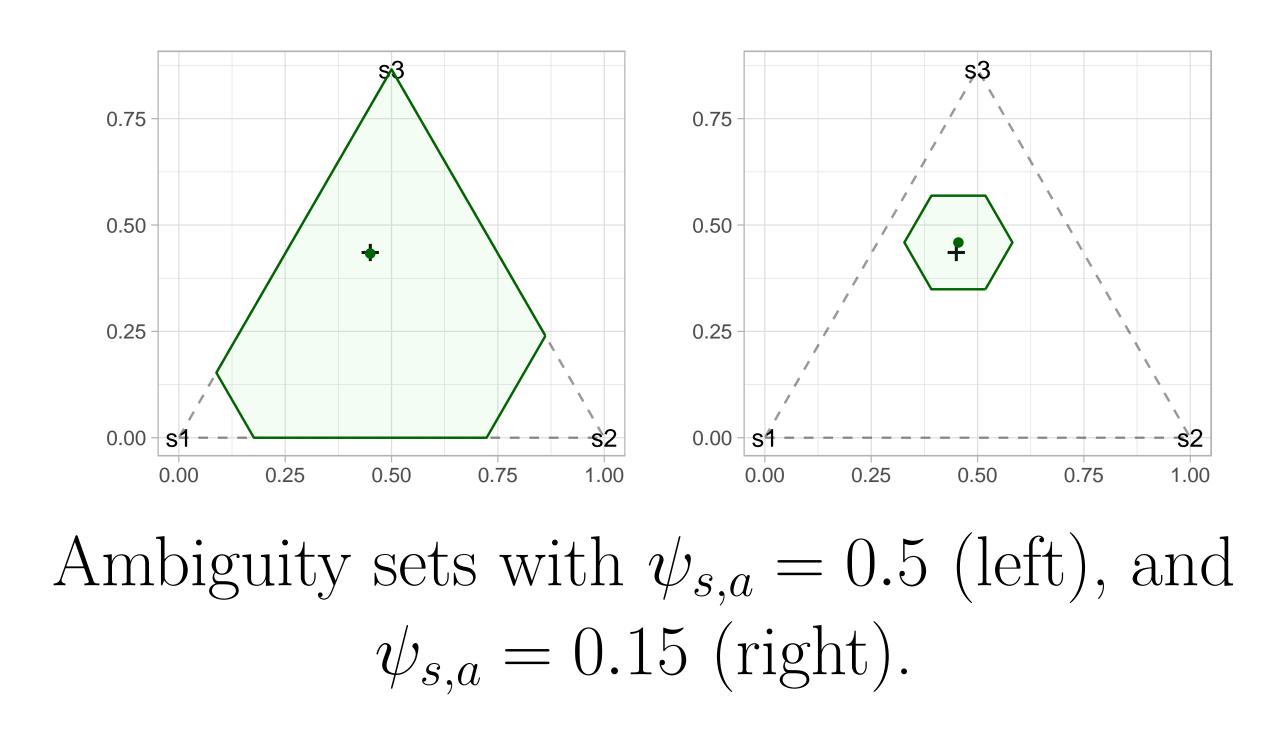
• We propose **optimism in the face of sensible value functions (OFVF)**- a novel *data-driven* Bayesian algorithm to constructing *Plausibility* sets for exploration in MDPs.

Contribution

• OFVF Computes policies with tighter optimistic estimates for exploration by introducing two new ideas:

1) It is based on Bayesian posterior distributions.

2) It uses the structure of the value function to optimize the *location* and *shape* of the plausibility set.

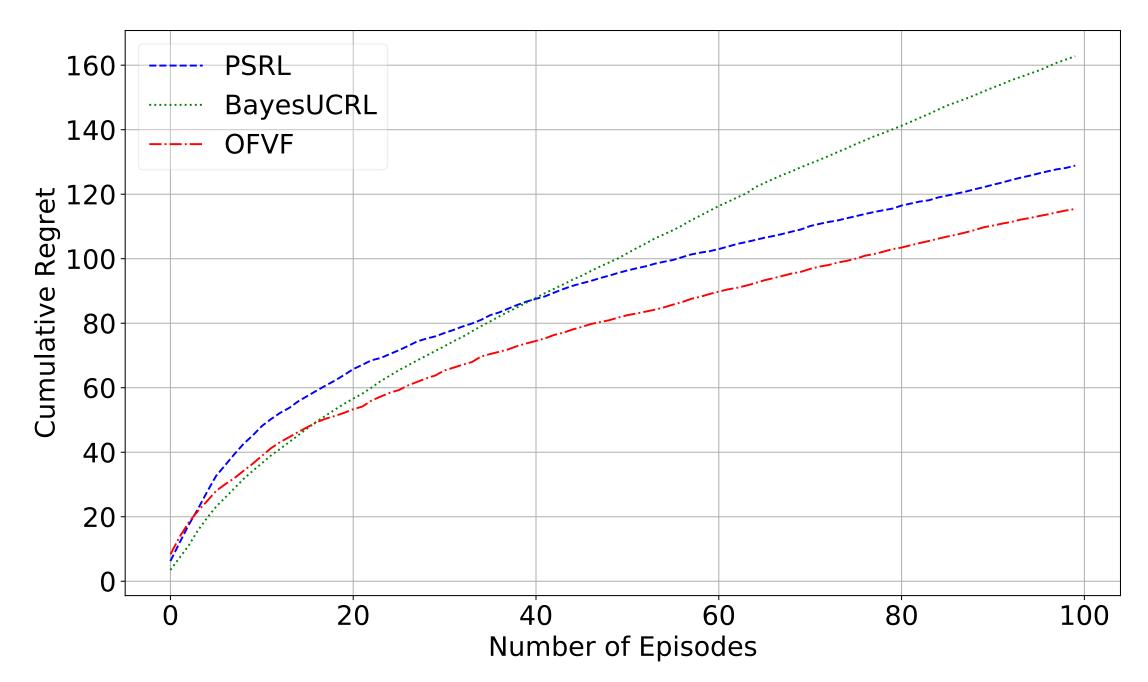


• L_1 -norm bounded plausibility set is constructed using Hoeffding's inequality

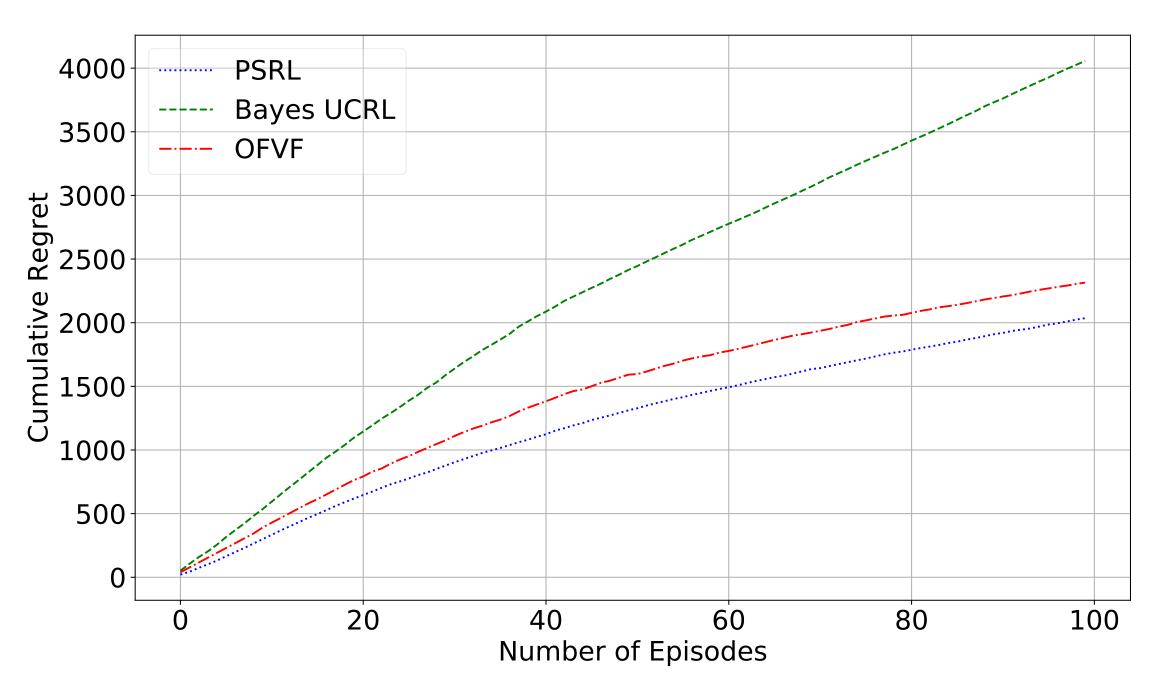
$$\psi_{sa} = \left\{ \|\tilde{p}_{sa} - \bar{p}_{sa}\|_{1} \le \sqrt{\frac{2}{n_{s,a}} \log \frac{SA2^{S}}{\delta}} \right\}$$

• Bayesian plausibility sets are optimized for the smallest credible region around the mean transition

 $\min_{\psi \in \mathbb{R}_+} \left\{ \psi : \mathbb{P} \left[\| \tilde{p}_{s,a} - \bar{p}_{s,a} \|_1 > \psi \mid \mathcal{D} \right] < \delta \right\} ,$



(a) Worst-case cumulative regret for Single state problem



• We showed that, OFU algorithms can be useful and can be competitive to stochastically optimistic algorithms like PSRL.

Problem Statement

- Finite horizon Markov Decision Process M with states S = {1,...,S} and actions A = {1,...,A}.
 p_{s,a}: S × A → Δ^S for state s ∈ S and action a ∈ A.
- *R^a_{ss'}* is reward for taking action *a* ∈ *A* from state *s* ∈ *S* and reaching state *s'* ∈ *S*.
 A policy π = (π₀,..., π_{H-1}) is a set of func-
- tions mapping a state $s \in \mathcal{S}$ to an action

OFVF

Optimistic algorithms solve an optimistic version of Bellman update: V^{*}_h(s, a) := max_{psa} ∑_{s'} p^{π(s)}_{ss'} [r_h + V^{*}(s')]
OFVF uses samples from a posterior distribution and computes an optimal plausibility set for a singleton V as: g = max {k : ℙ_{P*}[k ≤ v^Tp^{*}_{s,a}] ≥ 1 − δ/(SA)}
For V = {v₁, v₂, ..., v_k}, OFVF solves the following linear program: ψ_{s,a} = min_{p∈Δ^S} {max_{i=1,...,k} ||q_i − p||₁ : v^T_iq_i = g^{*}_i, α ∈ Δ^S i ∈ 1 → k} (b) Worst-case cumulative regret for RiverSwim Problem

Conclusion

Empirical results demonstrate that: OFVF outperforms other OFU algorithms like *UCRL* [1]. Rectangularity assumption of OFVF leads to over optimism and PSRL [2] can stand out with the advantage of not having that.

Acknowledgments

This project was supported by NSF under awards No. 1815275, and 1717368.

 $a \in \mathcal{A}$.

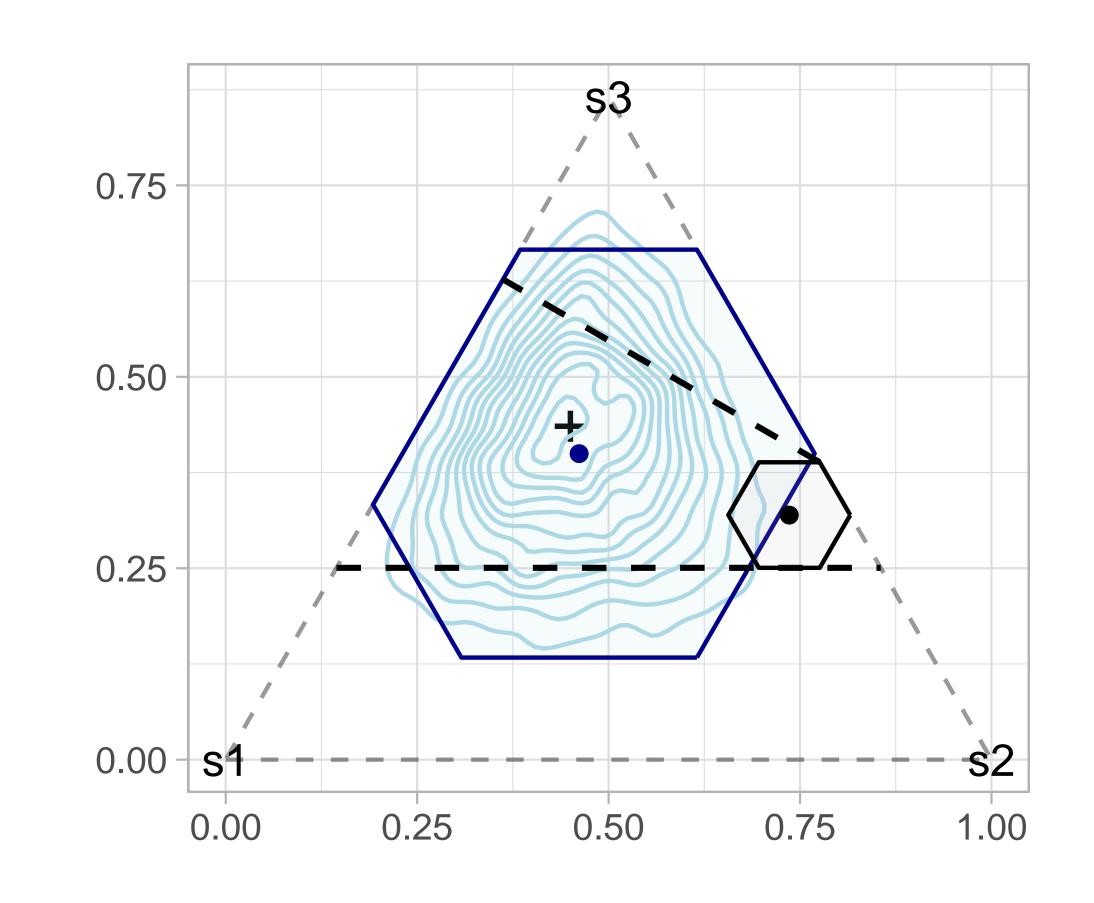
• A value function for a policy π as: $V_h^{\pi}(s) := \sum_{s'} P_{ss'}^{\pi(s)}[r_h + V(s')]$

• Plausibility set \mathcal{P} : set of possible transition kernels p.

Contact Information
• {rrussel, gu, mpetrik}@cs.unh.edu

 $q_i \in \Delta^S, i \in 1, \dots, k$

• OFVF constructs the plausibility set to minimize its radius while still intersecting the hyperplane for each v in \mathcal{V} .



References

[1]Thomas Jaksch, Ronald Ortner, and Peter Auer. *Near-optimal Regret Bounds for Reinforcement Learning.* Journal of Machine Learning Research, 11(1):1563–1600, 2010.

[2]Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) Efficient Reinforcement Learning via Posterior Sampling. Neural Information Processing Systems (NIPS), 2013.

Plausibility sets constructed with Bayesian and OFVF.