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Summary

•Markov Decision Processes (MDPs)
provide a powerful framework for modeling se-
quential decision problems under uncertainty.
•Exploration of poorly understood states
and actions is important for long-term plan-
ning and optimization.
•Optimism in the face of uncertainty

(OFU) is the main driving force of explo-
ration for many RL algorithms.
•We propose optimism in the face of sen-

sible value functions (OFVF)- a novel
data-driven Bayesian algorithm to construct-
ing Plausibility sets for exploration in MDPs.

Contribution
•OFVF Computes policies with tighter op-
timistic estimates for exploration by intro-
ducing two new ideas:
1) It is based on Bayesian posterior distri-
butions.
2) It uses the structure of the value func-
tion to optimize the location and shape of
the plausibility set.
•We showed that, OFU algorithms can be
useful and can be competitive to stochasti-
cally optimistic algorithms like PSRL.

Problem Statement

•Finite horizon Markov Decision Process M
with states S = {1, . . . , S} and actions A =
{1, . . . , A}.
•ps,a : S ×A → ∆S for state s ∈ S and action
a ∈ A.
•Ra

ss′ is reward for taking action a ∈ A from
state s ∈ S and reaching state s′ ∈ S.
•A policy π = (π0, . . . , πH−1) is a set of func-
tions mapping a state s ∈ S to an action
a ∈ A.
•A value function for a policy π as:

V π
h (s) :=

∑
s′

P
π(s)
ss′ [rh + V (s′)]

•Plausibility set P : set of possible transi-
tion kernels p.
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Plausibility Sets

•L1-constrained (s, a)-rectangular am-
biguity set for state s ∈ S and action a ∈ A
is defined as:
Ps,a = {ppp ∈ ∆S : ‖ppp− p̄pps,a‖1 ≤ ψs,a}.

Note: p̄pps,a is the nominal transition proba-
bility.
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Ambiguity sets with ψs,a = 0.5 (left), and
ψs,a = 0.15 (right).

•L1-norm bounded plausibility set is con-
structed using Hoeffding’s inequality

ψsa =
{
‖p̃sa− p̄sa‖1 ≤

√
2
ns,a

log SA2S
δ

}
•Bayesian plausibility sets are optimized for the
smallest credible region around the mean tran-
sition
min
ψ∈R+

{
ψ : P

[
‖p̃s,a− p̄s,a‖1 > ψ | D

]
< δ
}
,

OFVF

•Optimistic algorithms solve an optimistic ver-
sion of Bellman update:
V ?
h (s, a) := max

psa∈Psa

∑
s′

p
π(s)
ss′ [rh + V ?(s′)]

•OFVF uses samples from a posterior distribu-
tion and computes an optimal plausibility set
for a singleton V as:
g = max

{
k : PP ?[k ≤ vTp?s,a] ≥ 1− δ/(SA)

}
•For V = {v1, v2, . . . , vk}, OFVF solves the
following linear program:
ψs,a = min

p∈∆S

{
max
i=1,...,k

‖qi− p‖1 : vT
i qi = g?i ,

qi ∈ ∆S, i ∈ 1, . . . , k
}

•OFVF constructs the plausibility set to mini-
mize its radius while still intersecting the hy-
perplane for each v in V .

s1 s2

s3

+
●

●

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Plausibility sets constructed with Bayesian
and OFVF.

Empirical Evaluation

•We evaluate the performance in terms of
worst-case cumulative regret incurred by the
agent upto time T for a policy π?l :

sup
[∑
s∈S

p0(s)
(
V ?(s)− V π?l (s)

)]
•We compare OFVF with BayesUCRL and
OFVF.
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(a) Worst-case cumulative regret for Single state problem
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(b) Worst-case cumulative regret for RiverSwim Problem

Conclusion

Empirical results demonstrate that: OFVF
outperforms other OFU algorithms like UCRL
[1]. Rectangularity assumption of OFVF leads
to over optimism and PSRL [2] can stand out
with the advantage of not having that.
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