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The Problem - Background

Lattice-based Planner

Pivtoraiko & Kelly 2005

]
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=> |nfeasible

Sampling-based Planner

Goal

Obstacle collision

Feasible paths =>|nfeasible path

Road departure
=> Infeasible path

/

Divider crossing

Leonard et al. 2008
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The Problem - Background
Lattice-based Planner

Spatial-Temporal Graph Search

SE(2) Graph Generation

(b)

Many edges in the left lattice are not useful !
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The Problem - SE(2) Graph Generation

In this project, we want to find a principled way to generate SE(2) graph.

We want to answer following questions:
1. How dense should the SE(2) graph be?
2. Where should we put the vertices?
3. How to connect vertices?

Maximize

Diversity / Coverage
Minimize

Node count / Edge count
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Our Approach - Learning A SE(2) Graph From Human Driver

learning based Spatial Graph Genration Framework
Model
o D
# of nodes
Spatial Graph :
Cansritor SE(2) Graph—» human drive log
initial ego state
- )
context B feedback
(map, perception) 1. human trajectory
2. score(coverage)
- _J
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The Problem - SE(2) Graph Generation

e Less nodes, less edges
e High coverage on expert human trajectories
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Our Approach - Learning A SE(2) Graph From Human Driver

e |Initial Graph Generation
e Training Data Preparation

e Train a SE(2) Graph with Human Drive Data
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Our Approach - Learning A SE(2) Graph From Human Driver

e Initial Graph Generation - structured connection

baseline_lateral offset step edge num_lon = 2

-edge_start lon = 2
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Our Approach - Learning A SE(2) Graph From Human Driver

e |Initial Graph Generation - structured connection
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Our Approach - Learning A SE(2) Graph From Human Driver

Initial Graph Generation - How to choose candidate graph?

density = high

density = median

density = low
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Our Approach - Learning A SE(2) Graph From Human Driver

e |Initial Graph Generation - How to choose candidate graph?

uniform sample-based evaluator

cover samples as much as possible but still keep the graph size small
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Our Approach - Learning A SE(2) Graph From Human Driver

e Initial Graph Generation - How to choose candidate graph?

uniform sample-based evaluator

SEZ2 distance function: Weighted SE2 distance

d(S (/> = wl - Hslinez(fzxr - .(]l~i~n.e(_‘1_xr||L2 + w2 - HS(_'L‘I?,.'(']"l,l.l(fl,‘l‘ _ .(/(1.1'7_,_qula.r||L1
We setw1 =1, w2 =2.

This means 3 degree off on heading is about equally important as 10 cm off on 2D map.

(0.05rad is as important as 0.1 m)
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Our Approach - Learning A SE(2) Graph From Human Driver

Initial Graph Generation - How to choose candidate graph?
uniform sample-based evaluator
cover samples as much as possible but still keep the graph size small

Average Loss
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nN

Edge Count

Vertex Count
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baseline_lon_offset_s 1,2,3 4,5
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baseline_lateral_offse | 0.1, 0.5, 1, 2 m

t step

edge_start_lon 1,2, 3 vertices
edge_number _lon 1,2,3,4,5 vertices
edge_lateral_neighbo 1,2,3,4,5 neighbor lines each
r direction
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Our Approach - Learning A SE(2) Graph From Human Driver

e |Initial Graph Generation - How to choose candidate graph?
uniform sample-based evaluator
cover samples as much as possible but still keep the graph size small
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Our Approach - Learning A SE(2) Graph From Human Driver

e |Initial Graph Generation
e Training Data Preparation
e Train a SE(2) Graph with Human Drive Data
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Our Approach - Learning A SE(2) Graph From Human Driver

e Training Data Preparation

[ J OneNOrth EXDert Drlver Loq "init_ego_pose": [
. . . 1151.868874255502,
e contain 30 hours of AV data in Singapore B

1.2896617576737891
1,
"init_ego_velocity": 3.3481582460510673,
"goal ego pose”: [

1176.88308955458552,

414.6584417187234,
e planning instances are saved as JOSN files : MceP2Shbitseoa0
"log _name": "n@13-2019-086-17-14-1%-46+08308",
"init_timestamp”: 156@752396183863,
"duration": 5,
"ego path": [

e convert from legacy coordinates to UTM coordinates,
so it can work with avmap and avtest

e splitlog into planning problem instances

1151.808874255592,
393.97060909332663,
1.208966175767378¢91

1151.8681950012576,

394.89195137945043,

1.199778708367397
1.
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Our Approach - Learning A SE(2) Graph From Human Driver

e Training Data Preparation

e OneNorth Expert Driver_Log {
"init_ego_pose": [
e contain 30 hours of AV data in Singapore 1151.808874255502,
. . 303.976609689332663,
e convert from legacy coordinates to UTM coordinates, 1.2096617576737891
. . 1.
so it can work with avmap and avtest "init_ego_velocity”: 3.3481582460510673,
. . . . "goal_ego_pose": [
e splitlog into planning problem instances 1170.8830955458552,
. . 414 ,6584417187234,
e planning instances are saved as JOSN files b oo isEEiEieaaa0

1,
"log_name": "n@13-2619-86-17-14-12-46+0868",
"init_timestamp”: 1568752396183863,
"duration”: 5,
"ego _path": [
[

1151.8088742555092,

393.970608909332663,

1.208966175767378¢21

1,

[
1151.8681950012576,

394.09195137945043,
1.199778708367397

1,
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Our Approach - Learning A SE(2) Graph From Human Driver

e |Initial Graph Generation
e Training Data Preparation
e Train a SE(2) Graph with Human Drive Data
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Our Approach - Learning A SE(2) Graph From Human Driver

e Train a SE(2) Graph with Human Drive Data
o Loss computator : given a graph and a human trajectory, what is the loss between the
best reproduced trajectory and the human trajectory?
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Our Approach - Learning A SE(2) Graph From Human Driver

e Train a SE(2) Graph with Human Drive Data
o Loss computator : given a graph and a human trajectory, what is the loss between the
best reproduced trajectory and the human trajectory?
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Our Approach - Learning A SE(2) Graph From Human Driver

Loss computator : Dijkstra with edge loss as cost

Edge Loss:

Train a SE(2) Graph with Human Drive Data
O
O
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Our Approach - Learning A SE(2) Graph From Human Driver

Train a SE(2) Graph with Human Drive Data

Loss computator : Dijkstra with edge loss as cost

Edge Loss:

©)

O

APTIV:



Our Approach - Learning A SE(2) Graph From Human Driver

e Train a SE(2) Graph with Human Drive Data
o Loss computator : Dijkstra with edge loss as cost
o Edge Loss
o Score of the graph, Score of each edge
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Our Approach - Learning A SE(2) Graph From Human Driver

e Train a SE(2) Graph with Human Drive Data
o Loss computator : Dijkstra with edge loss as cost
o Edge Loss
o Score of the graph, Score of each edge
o Abstract graph
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Results and Discussion

e Results
e Takeaways

e Limitations
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Results - Edge Loss Prediction

1.2

1.0

o
©

edge error
o
(o)}

0.4

0.2

0.0

test set
testSetForErrors
— setl
set2

25000 50000 75000 100000 125000 150000 175000
Instance Count

prediction error converge on test set

Metrics:
mean
median
min
95 percentile

used in best trajectory
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Results - Graph Pruning

90.5% pruned

Many useless edges are pruned
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Results - Overhead on Loss
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= post-training
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Not much overhead on loss
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Results - Graph Pruning

30

Pruned Percentage

1.0

0.8

0.6

0.4

0.2

- oo o
>

Training Set Test Set

Data Set

~78% of the edges are pruned
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Results - Takeaways

e This approach enable the graph size reduction without compromising the
performance

e Utilizing drive logs has the potential to inform the planner
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Results - Limitations

e Low speed and stop scenarios are not supported
e The graph coverage is limited by the dataset

e Temporal dimension of the drivers’ decision is learned implicitly
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What’s Next

e Test the graph generator with a S-T planner

e \Write a patent/paper about the discovery
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