Bounded-Cost Search Using Estimates of Uncertainty

Maximilian Fickert, Tianyi Gu, Wheeler Ruml

Bounded-Cost Search

M. Fickert, T. Gu, W. Ruml

Bounded-Cost Search

Bounded-Cost Search

Objective: Find a plan with cost at most C as fast as possible.

- Standard Heuristic Search with Pruning on C
- Potential Search (PTS)¹
 - \rightarrow best-first search on $\frac{h}{C-q}$
- Bounded-cost Explicit Estimation Search (BEES)² \rightarrow focal search:
 - open sorted by f, only nodes with $g+h \leq C$
 - focal sorted by d, only nodes with g + ĥ ≤ C (ĥ is corrected for the observed heuristic error³)

¹Stern, Puzis, and Felner 2011. ²Thayer et al. 2012. ³Thayer, Dionne, and Ruml 2011.

- T(n): search effort to find a solution under n
- p(n): probability that n leads to a solution within C

⁴First suggested by Dobson and Haslum (HSDIP'17).

Best-first search on the expected effort:⁴
$$\frac{T}{p}$$

- T(n): search effort to find a solution under n
- p(n): probability that n leads to a solution within C

$$\begin{array}{c} n_1 \\ n_1 \end{array} \begin{array}{c} T = 10 \\ p = 0.5 \end{array}$$

$$\begin{array}{c} n_2 \\ n_2 \\ p = 0.25 \end{array}$$

⁴First suggested by Dobson and Haslum (HSDIP'17).

Best-first search on the expected effort:⁴
$$\frac{T}{p}$$

- T(n): search effort to find a solution under n
- p(n): probability that n leads to a solution within C

$$\begin{array}{c} n_1 \\ n_1 \\ p = 0.5 \end{array} \rightsquigarrow 20$$

$$\underbrace{n_2}_{p=0.25}^{T=6} \rightsquigarrow 24$$

⁴First suggested by Dobson and Haslum (HSDIP'17).

- T(n): search effort to find a solution under n
- p(n): probability that n leads to a solution within C

$$\begin{array}{c} \hline n_1 & T = 10 \\ p = 0.5 & & 20 \end{array} \qquad \text{How to obtain } T? \\ \hline \hline n_2 & T = 6 \\ p = 0.25 & & 24 \end{array}$$

⁴First suggested by Dobson and Haslum (HSDIP'17).

- T(n): search effort to find a solution under n
- p(n): probability that n leads to a solution within C

$$\begin{array}{c} \hline n_1 \\ m_1 \\ p = 0.5 \\ p = 0.5 \\ \hline m_2 \\ m_2 \\ p = 0.25 \end{array} \xrightarrow{\sim} 20 \qquad \begin{array}{c} \text{How to obtain } T? \\ \rightarrow \text{ just use } d \\ \text{How to obtain } p? \end{array}$$

⁴First suggested by Dobson and Haslum (HSDIP'17).

- T(n): search effort to find a solution under n
- p(n): probability that n leads to a solution within C

$$\begin{array}{c} \hline n_1 \\ \hline n_1 \\ p = 0.5 \\ \hline p = 0.5 \\ \hline \end{array} \xrightarrow{\sim} 20 \\ \hline \\ \text{How to obtain } T? \\ \rightarrow \text{ just use } d \\ \hline \\ \text{How to obtain } p? \\ \rightarrow \text{ approximate from } \hat{h} \text{ distribution} \end{array}$$

⁴First suggested by Dobson and Haslum (HSDIP'17).

Nancy⁵ belief distributions based on heuristic error observations⁶:

⁵Mitchell et al. 2019. ⁶Thayer, Dionne, and Ruml 2011.

Nancy⁵ belief distributions based on heuristic error observations⁶:

⁵Mitchell et al. 2019. ⁶Thayer, Dionne, and Ruml 2011.

XES optimizes search effort, assuming

- 1. the search explores one subtree at a time,
- 2. subtrees are independent, and
- 3. subtrees are abandoned after spending T(n) time.

BEES95:

- open sorted by f, only nodes with $g+h \leq C$
- focal sorted by d, only nodes with $g+\hat{h}\leq C\;p(n)>95\%$

Planning Domains:

- Implementation in Fast Downward⁷
- Benchmarks:
 - IPC'18 cost-bounded track
 - Previous IPC domains with bounds from Planning.Domains⁸

Search Domains:

Sliding-Tile Puzzle, Vacuum World, Pancake, Racetrack

⁷Helmert 2006. ⁸Muise 2016.

IPC'18 Bounded-Cost Track

Coverage	GBFS	PTS	BEES	BEES95	XES
Agricola (20)	1	0	0	0	0
Caldera (20)	8	10	10	12	13
Caldera-split (20)	4	2	2	2	2
DataNetwork (20)	2	0	3	3	4
Nurikabe (20)	4	10	10	11	9
Settlers (20)	4	5	10	11	11
Snake (20)	4	5	4	4	5
Spider (20)	7	11	10	10	9
Termes (20)	11	9	11	11	13
Sum (180)	45	52	60	64	66
Expansions $(*10^3)$	1.93	3.93	2.10	2.25	1.77

IPC'18 Bounded-Cost Track

Coverage	GBFS	PTS	BEES	BEES95	XES
Agricola (20)	1	0	0	0	0
Caldera (20)	8	10	10	12	13
Caldera-split (20)	4	2	2	2	2
DataNetwork (20)	2	0	3	3	4
Nurikabe (20)	4	10	10	11	9
Settlers (20)	4	5	10	11	11
Snake (20)	4	5	4	4	5
Spider (20)	7	11	10	10	9
Termes (20)	11	9	11	11	13
Sum (180)	45	52	60	64	66
Expansions $(*10^3)$	1.93	3.93	2.10	2.25	1.77

 \rightarrow Cost-bounded algorithms dominate GBFS; XES is best overall.

Pre-2018 IPC Domains

Search Domains: Heavy Vacuum World

M. Fickert, T. Gu, W. Ruml

Search Domains

M. Fickert, T. Gu, W. Ruml

Search Domains

M. Fickert, T. Gu, W. Ruml

Expected Effort Search (XES):

- Optimizes search effort in a simplified model.
- Superior robustness and performance to comparable algorithms.

 \rightarrow Advances the trend of leveraging distributional information in deterministic heuristic search.