Bounded-Cost Search Using Estimates of Uncertainty

Maximilian Fickert, Tianyi Gu, Wheeler Ruml
M. Fickert, T. Gu, W. Ruml

Bounded-Cost Search

Bounded-Cost Search

Bounded-Cost Search

Objective: Find a plan with cost at most C as fast as possible.

Previous Approaches

- Standard Heuristic Search with Pruning on C
- Potential Search (PTS) ${ }^{1}$
\rightarrow best-first search on $\frac{h}{C-g}$
- Bounded-cost Explicit Estimation Search (BEES) ${ }^{2}$
\rightarrow focal search:
- open sorted by f, only nodes with $g+h \leq C$
- focal sorted by d, only nodes with $g+\hat{h} \leq C$ (\hat{h} is corrected for the observed heuristic error ${ }^{3}$)

[^0]M. Fickert, T. Gu, W. Rum

Expected Effort Search (XES)

$$
\text { Best-first search on the expected effort: }{ }^{4} \frac{T}{p}
$$

- $T(n)$: search effort to find a solution under n
- $p(n)$: probability that n leads to a solution within C

Expected Effort Search (XES)

Best-first search on the expected effort: ${ }^{4} \frac{T}{p}$

- $T(n)$: search effort to find a solution under n
- $p(n)$: probability that n leads to a solution within C
(n) $\begin{aligned} & T=10 \\ & p=0.5\end{aligned}$
(n2) $\begin{aligned} & T=6 \\ & p=0.25\end{aligned}$
${ }^{4}$ First suggested by Dobson and Haslum (HSDIP'17).
M. Fickert, T. Gu, W. Ruml

Expected Effort Search (XES)

Best-first search on the expected effort: ${ }^{4} \frac{T}{p}$

- $T(n)$: search effort to find a solution under n
- $p(n)$: probability that n leads to a solution within C
(n) $\begin{aligned} & T=10 \\ & p=0.5\end{aligned} \rightsquigarrow 20$
$\left(n_{2}\right) \begin{aligned} & T=6 \\ & p=0.25\end{aligned} \rightsquigarrow 24$
${ }^{4}$ First suggested by Dobson and Haslum (HSDIP'17).

Expected Effort Search (XES)

Best-first search on the expected effort: ${ }^{4} \frac{T}{p}$

- $T(n)$: search effort to find a solution under n
- $p(n)$: probability that n leads to a solution within C
(n) $\begin{aligned} & T=10 \\ & p=0.5\end{aligned} \rightsquigarrow 20 \quad$ How to obtain T ?
(n2 $\begin{aligned} & T=6 \\ & p=0.25\end{aligned} \rightsquigarrow 24$
How to obtain p ?
${ }^{4}$ First suggested by Dobson and Haslum (HSDIP'17).
M. Fickert, T. Gu, W. Ruml

Expected Effort Search (XES)

Best-first search on the expected effort: ${ }^{4} \frac{T}{p}$

- $T(n)$: search effort to find a solution under n
- $p(n)$: probability that n leads to a solution within C
(n) $\begin{aligned} & T=10 \\ & p=0.5\end{aligned} \rightsquigarrow 20$

How to obtain T ? \rightarrow just use d
How to obtain p ?
$\left(n_{2}\right) \begin{aligned} & T=6 \\ & p=0.25\end{aligned} \rightsquigarrow 24$
${ }^{4}$ First suggested by Dobson and Haslum (HSDIP'17).
M. Fickert, T. Gu, W. Ruml

Expected Effort Search (XES)

Best-first search on the expected effort: ${ }^{4} \frac{T}{p}$

- $T(n)$: search effort to find a solution under n
- $p(n)$: probability that n leads to a solution within C
(n) $\begin{aligned} & T=10 \\ & p=0.5\end{aligned} \rightsquigarrow 20$

How to obtain T ?
\rightarrow just use d
How to obtain p ?
\rightarrow approximate from \hat{h} distribution

Obtaining p from Belief Distributions

Nancy ${ }^{5}$ belief distributions based on heuristic error observations ${ }^{6}$:

${ }^{5}$ Mitchell et al. 2019.
${ }^{6}$ Thayer, Dionne, and Ruml 2011.

Obtaining p from Belief Distributions

Nancy ${ }^{5}$ belief distributions based on heuristic error observations ${ }^{6}$:

${ }^{5}$ Mitchell et al. 2019.
${ }^{6}$ Thayer, Dionne, and Ruml 2011.

Theoretical Analysis

XES optimizes search effort, assuming

1. the search explores one subtree at a time,
2. subtrees are independent, and
3. subtrees are abandoned after spending $T(n)$ time.

Using p in BEES

BEES95:

- open sorted by f, only nodes with $g+h \leq C$
- focal sorted by d, only nodes with $y+\hat{h} \leq G p(n)>95 \%$

Experiments

Planning Domains:

- Implementation in Fast Downward ${ }^{7}$
- Benchmarks:
- IPC'18 cost-bounded track
- Previous IPC domains with bounds from Planning.Domains ${ }^{8}$

Search Domains:

- Sliding-Tile Puzzle, Vacuum World, Pancake, Racetrack

[^1]M. Fickert, T. Gu, W. Rum

IPC＇18 Bounded－Cost Track

Coverage	$\begin{aligned} & \omega \\ & \stackrel{\omega}{\omega} \\ & 0 \end{aligned}$	$\stackrel{\curvearrowleft}{\llcorner }$	$\begin{aligned} & \Omega \\ & 山 山 ⿱ 屮 凵 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{山} \\ & \underset{\sim}{u} \end{aligned}$	$\stackrel{\sim}{\sim}$
Agricola（20）	1	0	0	0	0
Caldera（20）	8	10	10	12	13
Caldera－split（20）	4	2	2	2	2
DataNetwork（20）	2	0	3	3	4
Nurikabe（20）	4	10	10	11	9
Settlers（20）	4	5	10	11	11
Snake（20）	4	5	4	4	5
Spider（20）	7	11	10	10	9
Termes（20）	11	9	11	11	13
Sum（180）	45	52	60	64	66
Expansions（ $* 10^{3}$ ）	1.93	3.93	2.10	2.25	1.77

IPC'18 Bounded-Cost Track

Coverage	$\begin{aligned} & \sim \\ & \stackrel{\sim}{\infty} \\ & \hline \end{aligned}$	$\stackrel{\sim}{\llcorner }$	$\begin{aligned} & \sim \\ & \sim \\ & \sim \end{aligned}$	$\xrightarrow[\sim]{\sim}$	$\stackrel{\sim}{\sim}$
Agricola (20)	1	0	0	0	0
Caldera (20)	8	10	10	12	13
Caldera-split (20)	4	2	2	2	2
DataNetwork (20)	2	0	3	3	4
Nurikabe (20)	4	10	10	11	9
Settlers (20)	4	5	10	11	11
Snake (20)	4	5	4	4	5
Spider (20)	7	11	10	10	9
Termes (20)	11	9	11	11	13
Sum (180)	45	52	60	64	66
Expansions ($* 10^{3}$)	1.93	3.93	2.10	2.25	1.77

\rightarrow Cost-bounded algorithms dominate GBFS; XES is best overall.

Pre-2018 IPC Domains

Search Domains: Heavy Vacuum World

Search Domains

Uniform Tile

Search Domains

Heavy Tile

Conclusion

Expected Effort Search (XES):

- Optimizes search effort in a simplified model.
- Superior robustness and performance to comparable algorithms.
\rightarrow Advances the trend of leveraging distributional information in deterministic heuristic search.

[^0]: ${ }^{1}$ Stern, Puzis, and Felner 2011.
 ${ }^{2}$ Thayer et al. 2012.
 ${ }^{3}$ Thayer, Dionne, and Rum 2011.

[^1]: ${ }^{7}$ Helmet 2006.
 ${ }^{8}$ Muse 2016.

