Distributional Methods for Heuristic Search

Tianyi Gu

Advisor: Wheeler Ruml

Tianyi Gu (UNH)

Distributional Methods for Heuristic Search – 1 / 22

About Me

Introduction

About Me

Real-time Search

Nancy

Conclusions

6th year CS PhD at UNH

Research: heuristic search and planning real-time heuristic search suboptimal search metareasoning

heuristic search can benefit from representing uncertainty

scalar heuristic \rightarrow belief distribution that represents uncertainty

About Me

Introduction

About Me

Real-time Search

Nancy

Conclusions

6th year CS PhD at UNH

Research: heuristic search and planning real-time heuristic search suboptimal search metareasoning

heuristic search can benefit from representing uncertainty

scalar heuristic \rightarrow belief distribution that represents uncertainty

Tianyi Gu (UNH)

Tianyi Gu (UNH)

Distributional Methods for Heuristic Search – 3 / 22

Motivation for Real-time Heuristic Search

Introduction

About Me

Real-time Search

Nancy

Conclusions

Real-time heuristic search:

return the next action within a time bound

Applications:

interacting with humans

dynamic environment

 autonomous vehicle inaccurate sensor update model online

Introduction

Nancy

- Decision-making
- Lookahead
- The Beliefs
- Results

Conclusions

Real-time Search as Decision-making Under Uncertainty: The Nancy Framework

Introduction

Nancy

- Decision-making
- Lookahead
- The Beliefs
- Results

Conclusions

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum fto explore the search space

Introduction

Lookahead

The Beliefs

Results

Conclusions

Nancy

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute

. ..

Decision-making

Introduction

Nancy

- Decision-making
- Lookahead
- The Beliefs
- Results

Conclusions

three phases:

1. Lookahead Phase:

expands nodes with minimum f

- to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

In the during the set of the set	
Introduction	

Nancy

- Decision-making
- Lookahead
- The Beliefs
- Results

Conclusions

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

repeat until at a goal

Introduction	
muouuction	

Nancy

- Decision-making
- Lookahead
- The Beliefs
- Results

Conclusions

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

repeat until at a goal

derived from offline search, but optimal for online?

random tree domain (Pemberton & Korf 1995)

f = g + h = g + 0 is lower bound on optimal plan cost

Should an agent at A move to B_1 or B_2 ? $(x_i \text{ are unknown but i.i.d. uniform 0-1})$

decision theory says minimize expected value lower bound: not suitable for rational action selection

Nancy

Should an agent at A move to B_1 or B_2 ? (x_i are unknown but i.i.d. uniform 0-1)

Should an agent at A move to B_1 or B_2 ? (x_i are unknown but i.i.d. uniform 0-1)

Lookahead Phase: A Troublesome Example

Lookahead Phase: A Troublesome Example

Should an agent expand nodes under α or β ?

 \hat{f} is not the answer: what to do? want to maximize value of information need to consider uncertainty of estimates

Introduction	
Nancy	

Decision-making

- Lookahead
- The Beliefs
- Results

Conclusions

Risk-based lookahead¹:

want to maximize value of information expand nodes which minimize expected regret relies on belief of values

choose expansions that decrease uncertainty in beliefs

¹Real-time Planning as Decision-making Under Uncertainty, Andrew Mitchell, Wheeler Ruml, Fabian Spaniol, Joerg Hoffmann, and Marek Petrik, AAAI, 2019.

Backup Rules: Nancy

How to Form The Belief Distribution?

Introduction	F
Nancy	
Decision-making	
Lookahead	
■ The Beliefs	
■ Results	
Conclusions	

Heuristic values: scalar \rightarrow probability distribution (belief)

But where do beliefs come from?

How to Form The Belief Distribution?

duction	Heuristi
cy	
ecision-making ookahead	
he Beliefs	
esults	NI
clusions	Nancy:
	trunca
	few p
	Data-Dr
	expres
	many

Intro

Nan ∎ D

Con

euristic values: scalar \rightarrow probability distribution (belief)

But where do beliefs come from?

truncated Gaussian based on \hat{f} and f, few parameters allows online learning

0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000 20 25 b 30 35 4

```
Data-Driven Nancy<sup>2</sup>:
```

expressive histogram,

many parameters requires offline learning

²Beliefs We Can Believe In: Replacing Assumptions with Data in Real-Time Search, Maximilian Fickert, Tianyi Gu, Leonhard Staut, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, AAAI, 2020.

oduction ncy Decision-making	Domain	Lookahead	LSS- LRTA*	Nancy	Nancy (DD)
ookahead The Beliefs		100	10		20
Results		100	46	33	38
	Blocksw.	300	36	30	34
		1000	30	32	27
		100	631	615	496
	Transport	300	519	559	485
		1000	499	567	422
	Transport	100	48	40	31
	(unit cost)	300	47	30	34
	(unit-cost)	1000	35	29	27
	Flovetore	100	50	35	39
	(unit_cost)	300	32	29	30
	(unit-cost)	1000	34	27	26
			•		

Both version of Nancy outperform conventional approach!

Tianyi Gu (UNH)

Intr

Nar

Co

Distributional Methods for Heuristic Search – 14 / 22

Introduction

Nancy

Conclusions

■ Summary

Conclusions

Tianyi Gu (UNH)

Distributional Methods for Heuristic Search – 15 / 22

Summary

Introduction
Nancy
Conclusions

Summary

Examples of using distribution to guide search:

- real-time planning: Nancy, DDNancy
- suboptimal search: XES (IJCAI-21 paper 994)
- robotics: BEAST (IROS-17)

Summary

Introduction	
Nancy	

Conclusions

Summary

Examples of using distribution to guide search:

- real-time planning: Nancy, DDNancy
- suboptimal search: XES (IJCAI-21 paper 994)
- robotics: BEAST (IROS-17)

Exciting time in AI!

- Planning, RL, ML, Robotics

Summary

Introduction
Nancy
Conclusions

Summary

Examples of using distribution to guide search:

- real-time planning: Nancy, DDNancy
- suboptimal search: XES (IJCAI-21 paper 994)
- robotics: BEAST (IROS-17)

Exciting time in AI!

- Planning, RL, ML, Robotics

Much work needs to be done!

- data-driven + planning
- statistics + model-based approach

Questions?

Introduction

Nancy

Conclusions

Questions

Questions?

Tianyi Gu (UNH)

Distributional Methods for Heuristic Search – 17 / 22

Introduction

Nancy

Conclusions

Back-up Slides

Completeness

Search

Back-up Slides

expand under α or β ?

Nancy

Conclusions

Back-up Slides

Completeness

Search

expand under α or β ?

Nancy

- Conclusions
- Back-up Slides
- Completeness
- Search

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

expand under α or β ?

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

Introduction

Conclusions

Search

Back-up Slides ■ Completeness

Nancy

expand under α or β ?

Tianyi Gu (UNH)

Distributional Methods for Heuristic Search – 19 / 22

expand under α or β ?

Tianyi Gu (UNH)

Nancy

Distributional Methods for Heuristic Search – 19 / 22

expand under α or β ?

Nancy

Conclusions

Back-up Slides

Completeness

Search

Tianyi Gu (UNH)

Completeness proof

Introd	uction
mirou	uction

Nancy

Conclusions

Back-up Slides

Completeness

Search

Lemma 1 Under assumptions of goal-awareness and finite state space, if a real-time search algorithm is incomplete, it must have a circulating set S_{\circ} .

Lemma 5 Under our assumptions, a reasonable real-time search algorithm cannot have a circulating set.

Theorem 1 Under our assumptions, a reasonable real-time search algorithm will eventually reach a goal.

Lemma 7 Nancy is a reasonable real-time search algorithm.

Lemma 8 LSS-LRTA* is a reasonable real-time search algorithm.

This proof applies to any LSS-LRTA*-style algorithm: no longer need heuristic consistency!

Search Domains

Introduction

Nancy

Conclusions

Back-up Slides

Completeness

Search

sliding tile puzzle uniform, heavy ,inverse pancake puzzle different size racetrack reminiscent of autonomous driving

Comparison to IE and MCTS on Classic Search Domains

Comparison to IE and MCTS on Classic Search Domains

40 Pancake

³Real-time Planning as Data-driven Decision-making, Maximilian Fickert, Tianyi Gu, Leonhard Staut, Sai Lekyang, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, Bridging the Gap Between AI Planning and Reinforcement Learning (PRL), 2020.