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An example: path finding
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agent performs search for a bounded time
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An example: path finding

agent

goal

search frontier

best

top level action

online planning: interleaving search and action execution
“receding horizon control”



Motivation for Real-time Heuristic Search

Introduction

■ About Me

■ Real-time Search

Nancy

Conclusions

Tianyi Gu (UNH) Distributional Methods for Heuristic Search – 4 / 22

Real-time heuristic search:
return the next action within a time bound

Applications:
interacting with humans

dynamic environment
- autonomous vehicle
inaccurate sensor
update model online
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three phases:

1. Lookahead Phase:
expands nodes with minimum f

to explore the search space
2. Decision-making Phase:

backup the minimum f from search frontier (‘minimin’)
select top level action with minimum f to execute

3. Learning Phase:
update heuristic values
(to escape local minima and avoid infinite loops)

repeat until at a goal

derived from offline search, but optimal for online?
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

A

B1

C1

x1 x2

0.3

C2

x3 x4

0.5

0.49

B2

C3

x5 x6

0.35

C4

x7 x8

0.35

0.51

random tree domain (Pemberton & Korf 1995)

f = g + h = g + 0 is lower bound on optimal plan cost
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

decision theory says minimize expected value
lower bound: not suitable for rational action selection
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Should an agent at A move to B1 or B2?
(xi are unknown but i.i.d. uniform 0-1)

f̂ is expected plan cost
f is not the answer: should minimize expected value!
plan under time pressure → bounded rationality
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0

0

0

f̂ is expected value

Should an agent expand nodes under α or β?
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f̂ is expected value

Should an agent expand nodes under α or β?

f̂ is not the answer: what to do?
want to maximize value of information

need to consider uncertainty of estimates
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Risk-based lookahead 1:
want to maximize value of information
expand nodes which minimize expected regret
relies on belief of values
choose expansions that decrease uncertainty in beliefs

1
Real-time Planning as Decision-making Under Uncertainty, Andrew Mitchell, Wheeler Ruml, Fabian Spaniol,

Joerg Hoffmann, and Marek Petrik, AAAI, 2019.
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Nancy:
parent ← belief with minimum f̂ among successors
conveys an entire belief distribution
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Heuristic values: scalar → probability distribution (belief)

But where do beliefs come from?
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Heuristic values: scalar → probability distribution (belief)

But where do beliefs come from?

Nancy:

truncated Gaussian based on f̂ and f ,
few parameters allows online learning

Data-Driven Nancy2:

expressive histogram,
many parameters requires offline learning

2
Beliefs We Can Believe In: Replacing Assumptions with Data in Real-Time Search, Maximilian Fickert,

Tianyi Gu, Leonhard Staut, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, AAAI, 2020.
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Both version of Nancy outperform conventional approach!
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- robotics: BEAST (IROS-17)
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Examples of using distribution to guide search:
- real-time planning: Nancy, DDNancy
- suboptimal search: XES (IJCAI-21 paper 994)
- robotics: BEAST (IROS-17)

Exciting time in AI!
- Planning, RL, ML, Robotics

Much work needs to be done!
- data-driven + planning
- statistics + model-based approach
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0 0
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2) estimate of how beliefs might change with search
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expand under α or β?

0

0 0

Risk: expected regret if a suboptimal action is selected
α is TLA with lowest expected value, other is β

E




f

∗(α)− f∗(β)
︸ ︷︷ ︸

what is our regret

∣
∣ f∗(β) < f∗(α)

︸ ︷︷ ︸

in cases when α not best





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expand under α or β?

0

0 0

expand under the TLA that minimizes risk!
expand under β!
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Lemma 1 Under assumptions of goal-awareness and finite state

space, if a real-time search algorithm is incomplete, it must have

a circulating set S◦.

Lemma 5 Under our assumptions, a reasonable real-time search

algorithm cannot have a circulating set.

Theorem 1 Under our assumptions, a reasonable real-time

search algorithm will eventually reach a goal.

Lemma 7 Nancy is a reasonable real-time search algorithm.

Lemma 8 LSS-LRTA* is a reasonable real-time search

algorithm.

This proof applies to any LSS-LRTA*-style algorithm: no longer
need heuristic consistency!
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sliding tile puzzle
uniform, heavy ,inverse

pancake puzzle
different size

racetrack
reminiscent of autonomous driving
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pancake puzzle
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Nancy outperforms conventional approaches and MCTS3

3
Real-time Planning as Data-driven Decision-making, Maximilian Fickert, Tianyi Gu, Leonhard Staut, Sai

Lekyang, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, Bridging the Gap Between AI Planning and Rein-
forcement Learning (PRL), 2020.
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