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What is Real-time Heuristic Search?

An example: path finding
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What is Real-time Heuristic Search?

An example: path finding
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online planning: interleaving search and action execution
“receding horizon control”
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Motivation for Real-time Heuristic Search

Real-time heuristic search:
return the next action within a time bound

B Real-time Search

Applications:
interacting with humans

dynamic environment
- autonomous vehicle
inaccurate sensor
update model online
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Real-time Search as Decision-making Under
Uncertainty:
The Nancy Framework
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A Classic Approach: LSS-LRTA* (Koenig&Sun 2008

three phases:
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B Results to explore the search space
Conclusions 2. Decision-making Phase:

backup the minimum f from search frontier (‘minimin")
select top level action with minimum f to execute

3. Learning Phase:
update heuristic values
(to escape local minima and avoid infinite loops)

repeat until at a goal

derived from offline search, but optimal for online?
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Decision-making Phase: A Troublesome Example

Should an agent at A move to By or By?
(z; are unknown but i.i.d. uniform 0-1)
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random tree domain (Pemberton & Korf 1995)

f=g+ h =g+ 0 is lower bound on optimal plan cost
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decision theory says minimize expected value
lower bound: not suitable for rational action selection
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f Is expected plan cost
f is not the answer: should minimize expected value!
plan under time pressure — bounded rationality
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Lookahead Phase: A Troublesome Example
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Lookahead Phase: A Troublesome Example

Introduction
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B Lookahead

Bl The Beliefs
B Results

Conclusions

belief about «

belief about

fe) f(8)

A

f is expected value

Should an agent expand nodes under « or (57

f is not the answer: what to do?
want to maximize value of information
need to consider uncertainty of estimates
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Risk-based Lookahead

N Risk-based lookahead !:

Ny want to maximize value of information

B Decision-making . - e .

expand nodes which minimize expected regret
W The Beliefs relies on belief of values

B Results

choose expansions that decrease uncertainty in beliefs

Conclusions

1 Real-time Planning as Decision-making Under Uncertainty, Andrew Mitchell, Wheeler Ruml, Fabian Spaniol,
Joerg Hoffmann, and Marek Petrik, AAAI, 2019.
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Backup Rules: Nancy
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How to Form The Belief Distribution?

Heuristic values: scalar — probability distribution (belief)
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How to Form The Belief Distribution?

Heuristic values: scalar — probability distribution (belief)

Introduction

Nancy

B Decision-making But where do beliefs come from?
M Lookahead

B The Beliefs

B Results

Conclusions Na ncy: /\

truncated Gaussian based on f and f, F) Fn)
few parameters allows online learning

Data-Driven Nancy?: o I‘ll
expressive histogram, o -|2<,|| ' II
many parameters requires offline learning

2
Beliefs We Can Believe In: Replacing Assumptions with Data in Real-Time Search, Maximilian Fickert,
Tianyi Gu, Leonhard Staut, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, AAAI, 2020.
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Mean Solution Cost on Planning Domains

Introduction ) LS S_ Nanc
S Domain  Lookahead | [ pras Nancy (DD)y
B Lookahead :
Bl The Beliefs 100 46 33 38
e Blocksw. 300 36 30 34
1000 30 32 27
100 631 615 496
Transport 300 519 559 485
1000 499 567 422
100 48 40 31
T t
fuitcost) 300 47 30 34
1000 35 29 27
Elevators 100 50 35 39
: 300 32 29 30
(unit-cost) 1000 4 27 26

Both version of Nancy outperform conventional approach!
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Conclusions

Conclusions
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Summary
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Introduction

Nancy
Conellisians - suboptimal search: XES (I1JCAI-21 paper 994)
- robotics: BEAST (IROS-17)

Exciting time in Al!
- Planning, RL, ML, Robotics

Much work needs to be done!
- data-driven + planning
- statistics + model-based approach
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Questions?
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Back-up Slides

Back-up Slides
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Risk-based Lookahead Example

expand under o or 37
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Risk-based Lookahead Example
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need 2 things:
1) current beliefs
2) estimate of how beliefs might change with search
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Risk-based Lookahead Example

expand under o or 37

z

£\
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expand under the TLA that minimizes risk!
expand under !
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Completeness proof

I troduction Lemma 1 Under assumptions of goal-awareness and finite state
Nancy space, if a real-time search algorithm is incomplete, it must have
Conclusions a CirCU/ating set So.

Back-up Slides
Lemma 5 Under our assumptions, a reasonable real-time search

B Search . . .
algorithm cannot have a circulating set.

Theorem 1 Under our assumptions, a reasonable real-time
search algorithm will eventually reach a goal.

Lemma 7 Nancy is a reasonable real-time search algorithm.

Lemma 8 LSS-LRTA* is a reasonable real-time search
algorithm.

This proof applies to any LSS-LRTA*-style algorithm: no longer
need heuristic consistency!
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Search Domains

sliding tile puzzle
uniform, heavy ,inverse

Introduction

Nancy

Conclusions panca ke pUZZle
Back-up Slides diﬂ:erent size
B Completeness k
racetrac

reminiscent of autonomous driving
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Comparison to IE and MCTS on Classic Search Domains

pancake puzzle

Introduction
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Conclusions
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Comparison to IE and MCTS on Classic Search Domains

40 Pancake
Introduction
Nancy
Conclusions 2
Back-up Slides -
17, 0.0
B Completeness S
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€
g 15
S
o
< Algorithm
-10.0
IE
Nancy (DD)
Nancy
T12s THTS-WA*
LSS-LRTA*
30 100 300 1000

Node Expansion Limit

Nancy outperforms conventional approaches and MCTS3

3Real—time Planning as Data-driven Decision-making, Maximilian Fickert, Tianyi Gu, Leonhard Staut, Sai
Lekyang, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, Bridging the Gap Between Al Planning and Rein-
forcement Learning (PRL), 2020.
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