Metareasoning for Heuristic Search Using Uncertainty

Tianyi Gu

University of New Hampshire

Committee members:

Momotaz Begum Laura Dietz Levi Lelis Marek Petrik Wheeler Ruml (Advisor)

Metareasoning for Heuristic Search Using Uncertainty – 1 / 50

Introduction	
Thesis	
Heuristic Search	
Other Search	9
Metareasoning	
Distributional	
Method	
Overview	
Real-time Search	
Online Planning	
Bounded-Cost	
Search	
Conclusion	

heuristic search can benefit from representing uncertainty

scalar heuristic \rightarrow belief distribution that represents uncertainty

Introduction	
Thesis	
Heuristic Search	
Other Search	sca
Metareasoning	
Distributional	
Method	
Overview	
Real-time Search	sho
Online Planning	
Bounded-Cost	
Search	
Conclusion	

heuristic search can benefit from representing uncertainty

scalar heuristic \rightarrow belief distribution that represents uncertainty

how in three problem settings:

- real-time heuristic search
- concurrent planning and execution
- I bounded-cost search

Introduction	heuristic search:	a planning approach
■ Thesis		
Heuristic Search		
Other Search		
Metareasoning		
Distributional		
Method		
Real-time Search		
Online Planning		
Bounded-Cost		
Search		
Conclusion		

Tianyi Gu (UNH)

Introduction Thesis Heuristic Search Other Search Metareasoning Distributional Method Overview Real-time Search Online Planning Bounded-Cost

Search

Conclusion

heuristic search: a planning approach

planning is a model-based AI method, it models the environment as a state space and finds a sequence of actions that accomplishes some objective Introduction

- Thesis
- Heuristic Search
- Other Search
- Metareasoning
- Distributional
- Method
- Overview

Real-time Search

Online Planning

Bounded-Cost Search

Conclusion

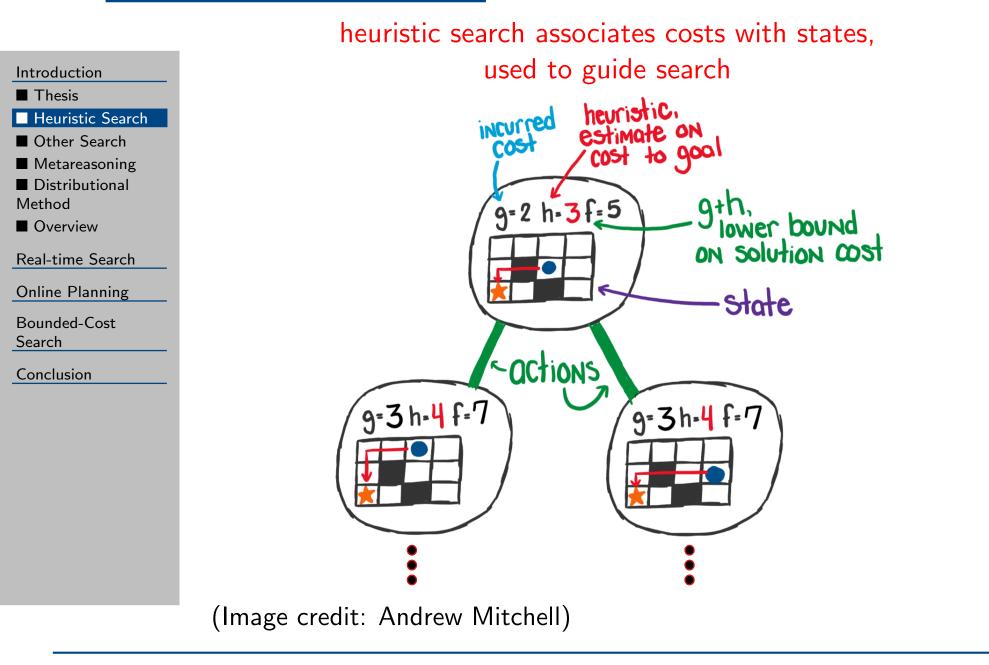
heuristic search: a planning approach

planning is a model-based AI method, it models the environment as a state space and finds a sequence of actions that accomplishes some objective

heuristic search:

{states, actions} \rightarrow {V, E} planning problem \rightarrow find a path from s_{init} to { s_{goal} } guide graph search by a heuristic estimate of cost-to-goal

What is Heuristic Search?



Tianyi Gu (UNH)

Heuristic Search

Introduction
Thesis
Heuristic Search
Other Search
Metareasoning
 Distributional Method
Overview
Real-time Search
Online Planning
Bounded-Cost Search
Conclusion

A*: expands the node with minimal f value returns optimal path optimal search can take too long! because it must expand every node with $f < C^{*1}$

¹How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.

Heuristic Search

Introduction	A*:
■ Thesis	
Heuristic Search	
Other Search	
 Metareasoning Distributional 	
Method	
Overview	
Real-time Search	
Online Planning	
Bounded-Cost Search	
Conclusion	

: expands the node with minimal f value returns optimal path optimal search can take too long! because it must expand every node with $f < C^{*1}$

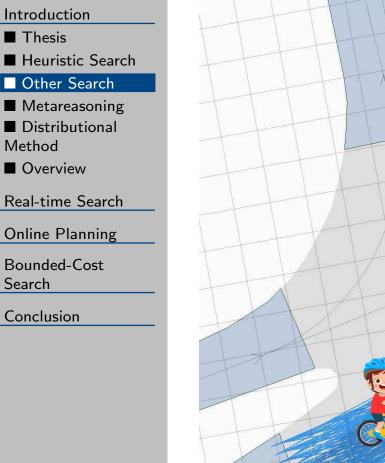
What if we don't have time?

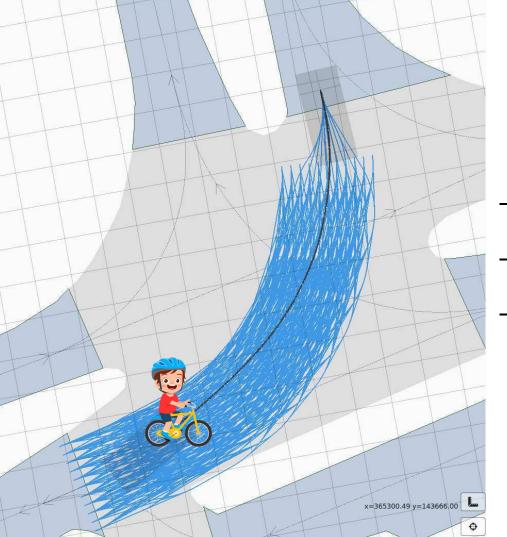
¹How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.

Introduction

In

What If We Are Under Time Pressure?





- large state space
- limited resource
- hard time bound

Alternatives to Optimal Search?

	1
Introduction	д.
Thesis	
Heuristic Search	0
Other Search	Ζ.
Metareasoning	
Distributional	
Method	3.
Overview	-
Real-time Search	
Online Planning	
Bounded-Cost	
Search	
Conclusion	

- . real-time heuristic search time bound
- concurrent planning and execution system must be stay under control
- bounded-cost search cost bound

Alternatives to Optimal Search?

Introduction	1.	real
■ Thesis		
Heuristic Search	0	
Other Search	2.	cond
 Metareasoning Distributional Method Overview 	3.	bou
Real-time Search		
Online Planning		
Bounded-Cost	me	tareas
Search	***	conin
Conclusion	rea	sonin

- -time heuristic search time bound
- current planning and execution system must be stay under control
- nded-cost search cost bound

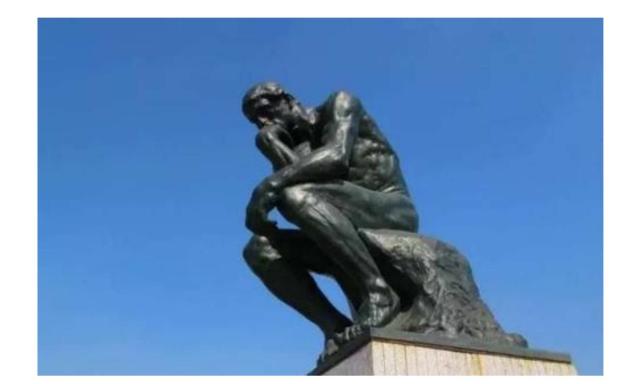
soning:

g about which reasoning to do

Metareasoning: Reasoning About Which Reasoning To Do

Introduction

- Thesis
- Heuristic Search
- Other Search
- Metareasoning
- Distributional Method
- Overview
- Real-time Search
- Online Planning
- Bounded-Cost Search
- Conclusion



planning

Tianyi Gu (UNH)

Metareasoning: Reasoning About Which Reasoning To Do

- Thesis
- Heuristic Search
- Other Search
- Metareasoning
- Distributional Method
- Overview

Real-time Search

Online Planning

Bounded-Cost Search

Conclusion

metareasoning

Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty - 9 / 50

Metareasoning: Reasoning About Which Reasoning To Do

Introduction

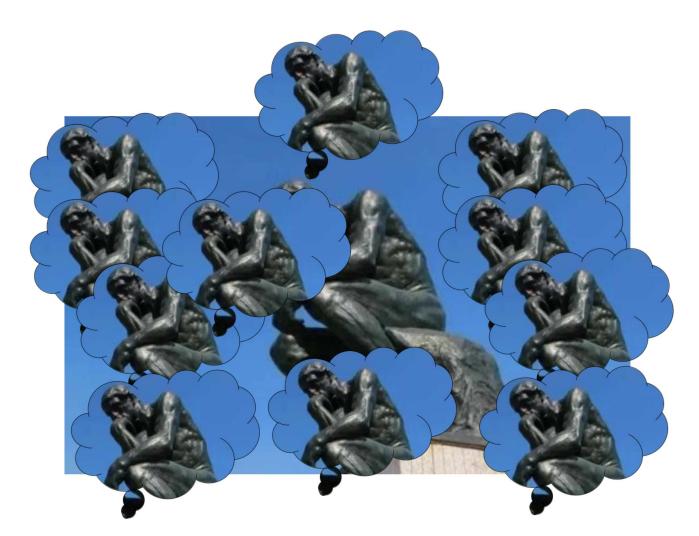
- Thesis
- Heuristic Search
- Other Search
- Metareasoning
- Distributional Method
- Overview

Real-time Search

Online Planning

Bounded-Cost Search

Conclusion



Make sure we are not dying from overthink and never act!

Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – 9 / 50

Intro	ductio	n
Intro	auctioi	Π

- Thesis
- Heuristic Search
- Other Search
- Metareasoning
- Distributional
- Method
- Overview

Real-time Search

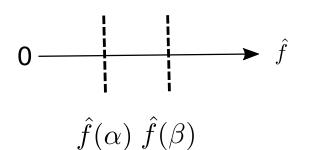
```
Online Planning
```

Bounded-Cost Search

Conclusion

```
bounded rationality \rightarrow uncertainty
```

Intuitively, distribution can be better than scalar-value based methods because it quantifies uncertainty, which is what search resolves.



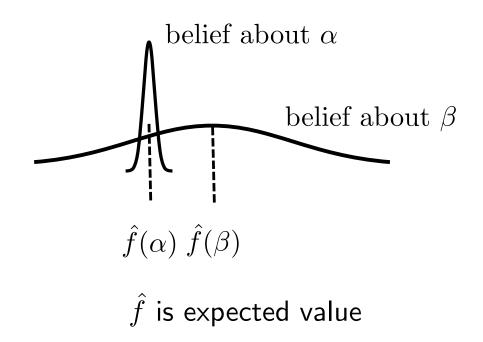
 \hat{f} is expected value

Should an agent expand nodes under α or β ?

Introduction Thesis Heuristic Search Other Search Metareasoning Distributional Method Overview **Real-time Search Online Planning** Bounded-Cost Search Conclusion

```
bounded rationality \rightarrow uncertainty
```

Intuitively, distribution can be better than scalar-value based methods because it quantifies uncertainty, which is what search resolves.



Should an agent expand nodes under α or β ?

Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – $10\ /\ 50$

Introduction	heur
■ Thesis	
Heuristic Search	
Other Search	
Metareasoning	
Distributional Method	imp
Overview	
Real-time Search	imp
Online Planning	unce
Bounded-Cost Search	une
Conclusion	imp

heuristic search can benefit from representing uncertainty

- improving real-time search by representing uncertainty DDNancy: AAAI-20 *
- improving concurrent planing and execution by representing uncertainty
 - FACS: IntEx-21
- improving bounded-cost search by representing uncertainty XES: IJCAI-21

Introduction

Real-time Search

- Real-time Search
- Lookahead
- The Beliefs
- 🔳 Data
- Data Viz
- Result
- Summary

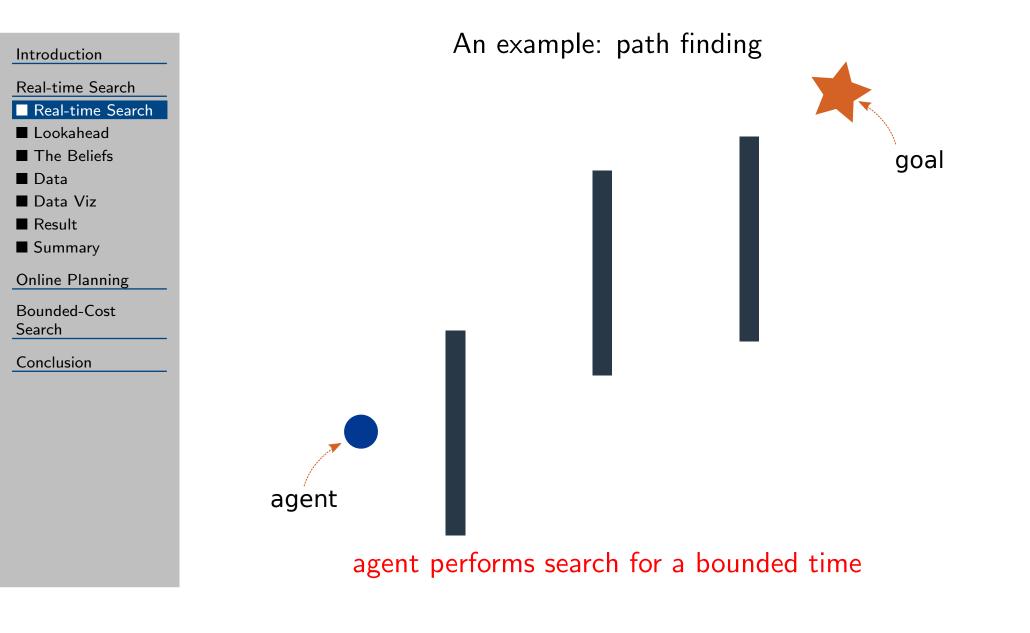
Online Planning

Bounded-Cost Search

Conclusion

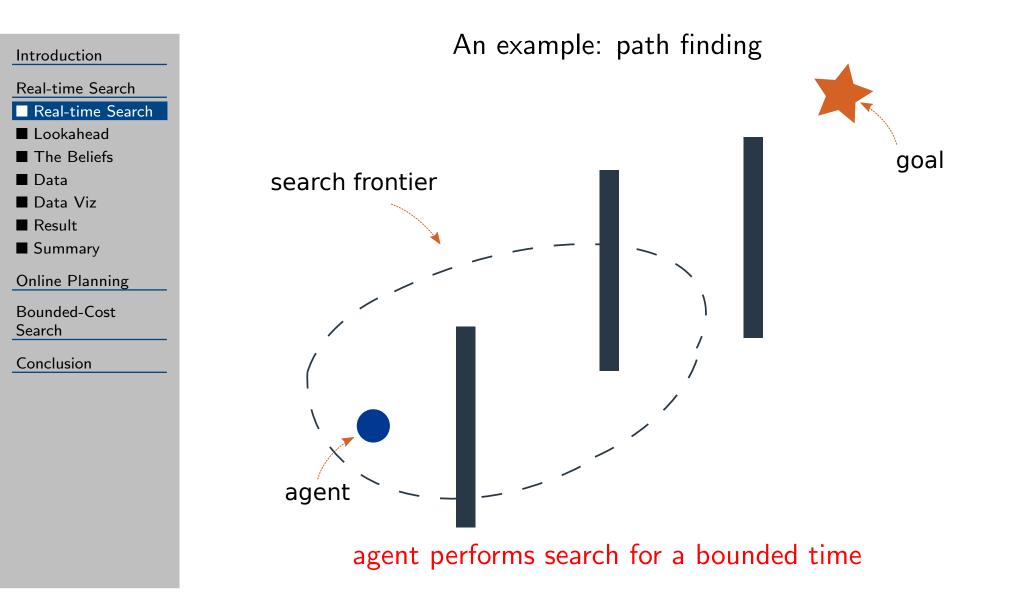
Data-driven Real-time Search as Decision-making Under Uncertainty: Data-driven Nancy

Joint work with Maximilian Fickert, Leonhard Staut, Sai Lekyang, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik



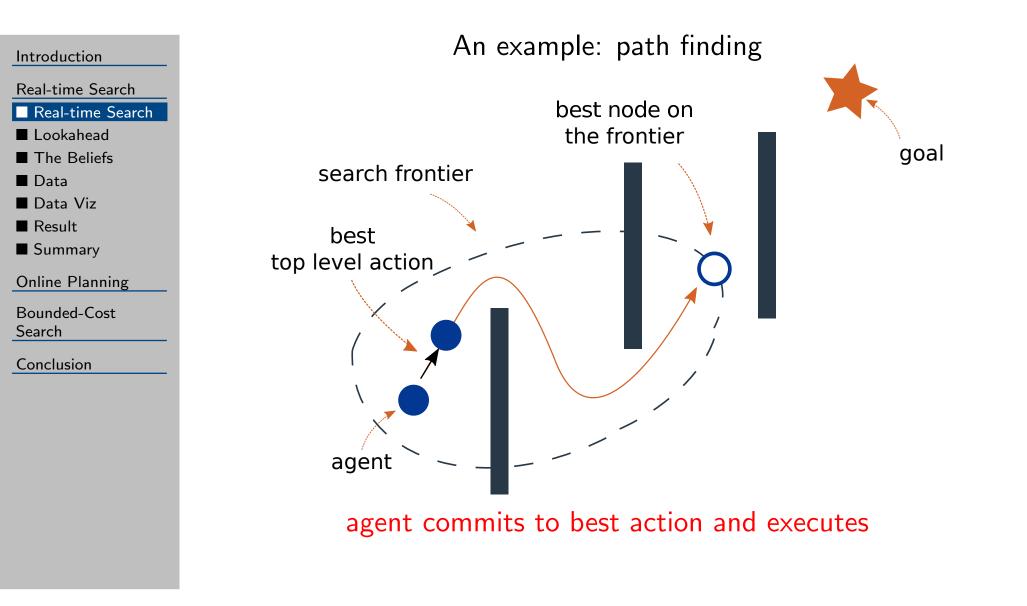
Tianyi Gu (UNH)

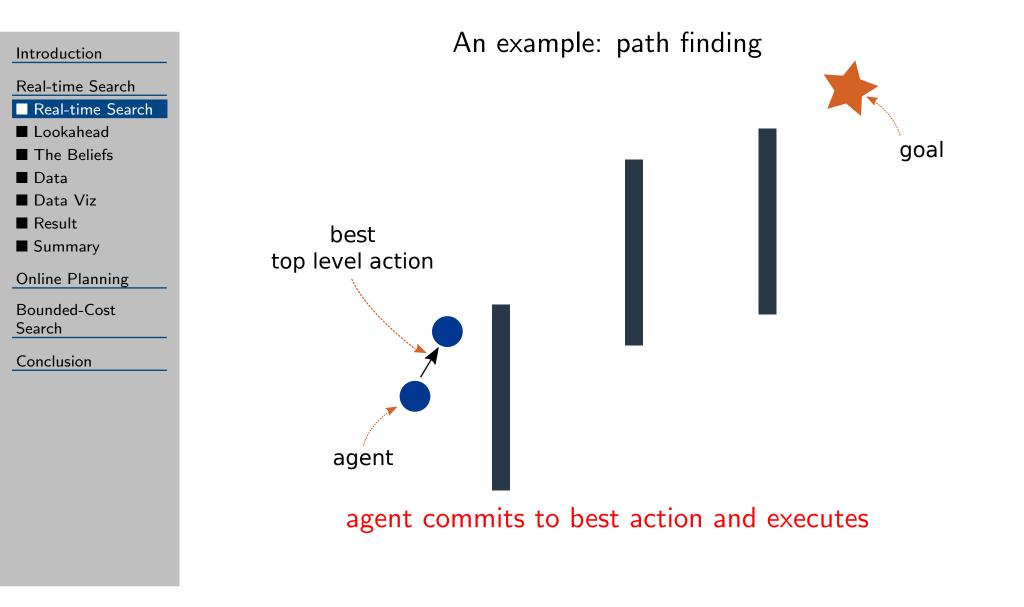
Metareasoning for Heuristic Search Using Uncertainty – 13 / 50

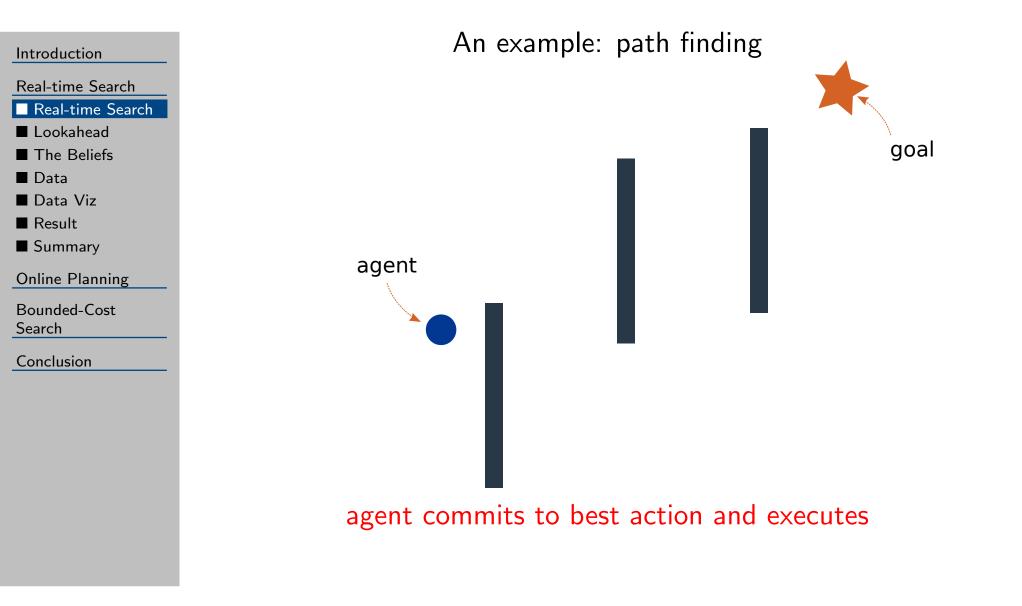


Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – 13 / 50

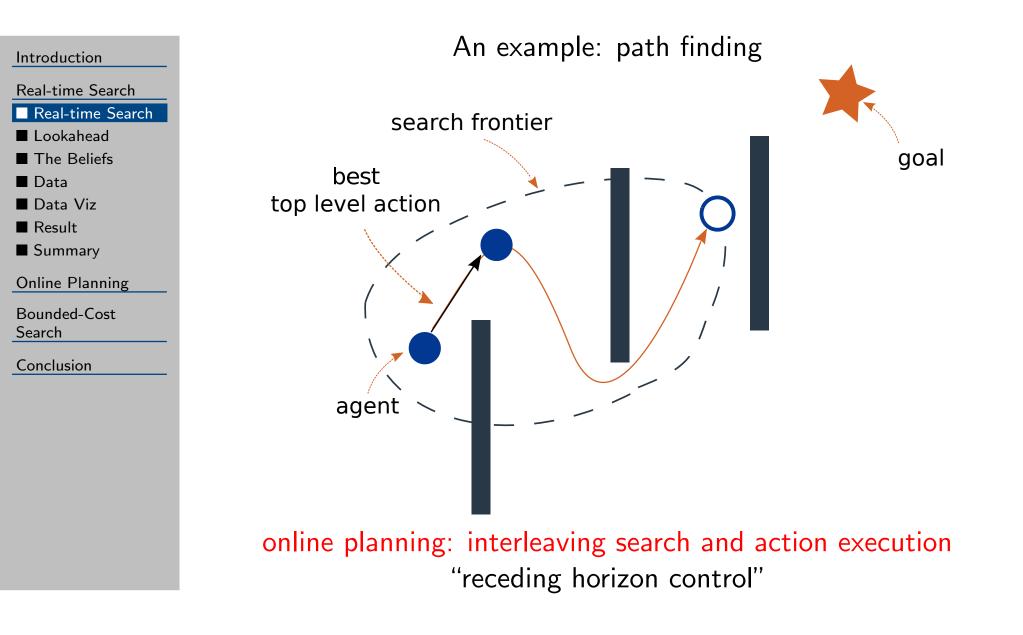






Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – 13 / 50



A Classic Approach: LSS-LRTA* (Koenig&Sun 2008)

Introduction

three phases:

- Real-time Search
- Real-time Search
- Lookahead
- The Beliefs
- Data
- Data Viz
- Result
- Summary
- Online Planning
- Bounded-Cost Search
- Conclusion

- 1. Lookahead Phase:
 - expands nodes with minimum fto explore the search space

Introduction

three phases:

- Lookahead Phase: 1.
 - expands nodes with minimum f
 - to explore the search space
- Decision-making Phase: 2.
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute

Real-time Search

- Real-time Search
- Lookahead

■ The Beliefs

Data

Data Viz

Result

■ Summary

Online Planning

Bounded-Cost Search

Conclusion

Introduction	
Introduction	

Lookahead

■ The Beliefs

Data
 Data Viz

Result

Search

Conclusion

■ Summary

Online Planning

Bounded-Cost

Real-time Search

Real-time Search

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:

backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute

3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

Introduction
Real-time Search

- Real-time Search
- Lookahead
- The Beliefs
- 🗖 Data
- Data Viz
- Result
- Summary
- Online Planning
- Bounded-Cost Search
- Conclusion

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:
 - update heuristic values (to escape local minima and avoid infinite loops)

repeat until at a goal

proved to be complete for consistent heuristic

Real-time Search
Real-time Search
Lookahead
■ The Beliefs
Data
Data Viz
Result

Summary

Introduction

- Online Planning
- Bounded-Cost Search
- Conclusion

three phases:

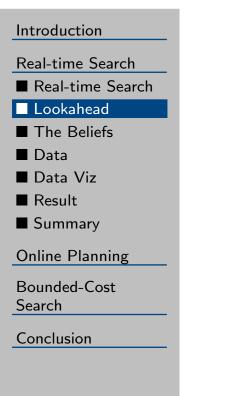
- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:
 - update heuristic values (to escape local minima and avoid infinite loops)

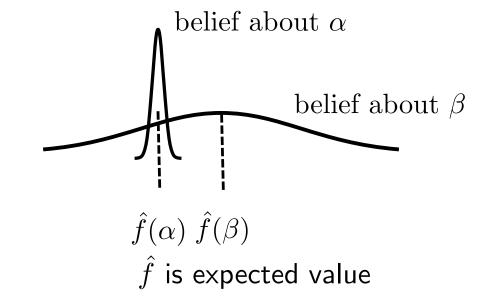
repeat until at a goal

proved to be complete for consistent heuristic

derived from offline search, but optimal for online?

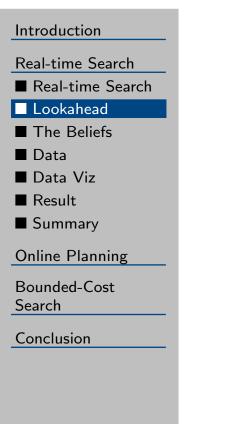
Lookahead Phase: A Troublesome Example

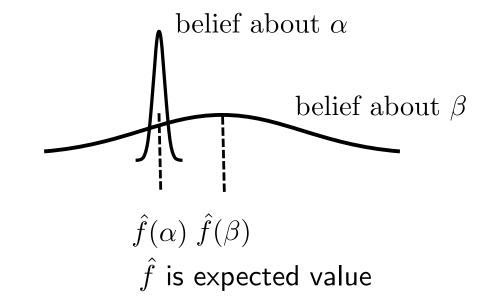




Should an agent expand nodes under α or β ?

Lookahead Phase: A Troublesome Example



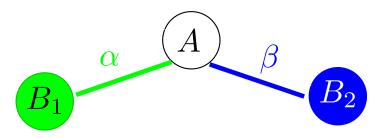


Should an agent expand nodes under α or β ?

 \hat{f} is not the answer: what to do? want to maximize value of information need to consider uncertainty of estimates Risk-based evaluation: minimize expected regret

Risk-based Lookahead Example

expand under α or β ?



Introduction

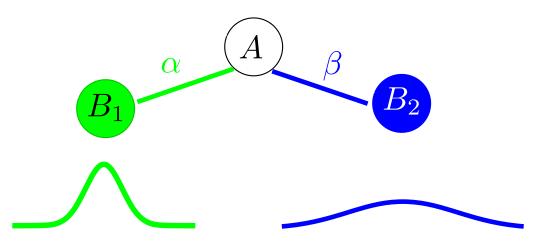
Real-time Search

- Real-time Search
- Lookahead
- The Beliefs
- Data
- Data Viz
- Result
- Summary
- Online Planning
- Bounded-Cost Search

Conclusion

Risk-based Lookahead Example

expand under α or β ?



Introduction

- Real-time Search
- Real-time Search
- Lookahead
- The Beliefs
- 🔳 Data
- 🔳 Data Viz
- Result
- Summary

Online Planning

Bounded-Cost Search

Conclusion

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

Risk-based Lookahead Example

expand under α or β ?

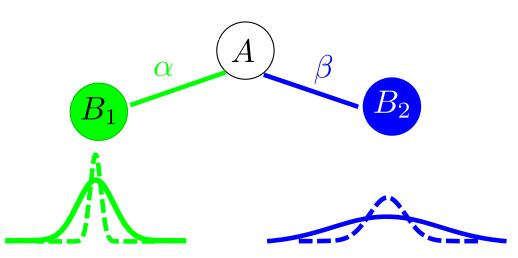
Real-time Search

- Real-time Search
- Lookahead
- The Beliefs
- 🔳 Data
- 🔳 Data Viz
- Result
- Summary

Online Planning

Bounded-Cost Search

Conclusion

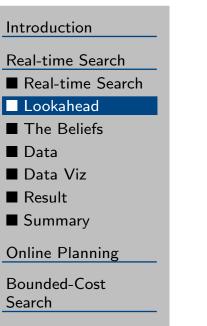


need 2 things:

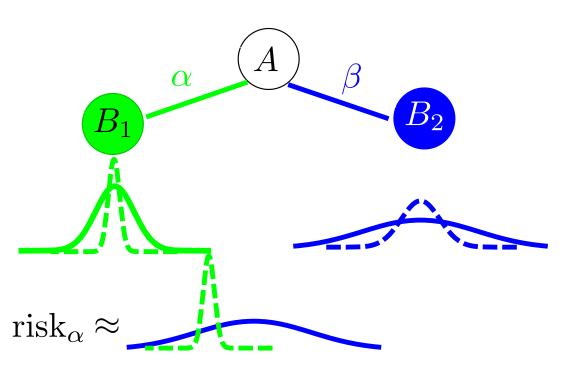
- 1) current beliefs
- 2) estimate of how beliefs might change with search

Risk-based Lookahead Example

expand under α or β ?



Conclusion

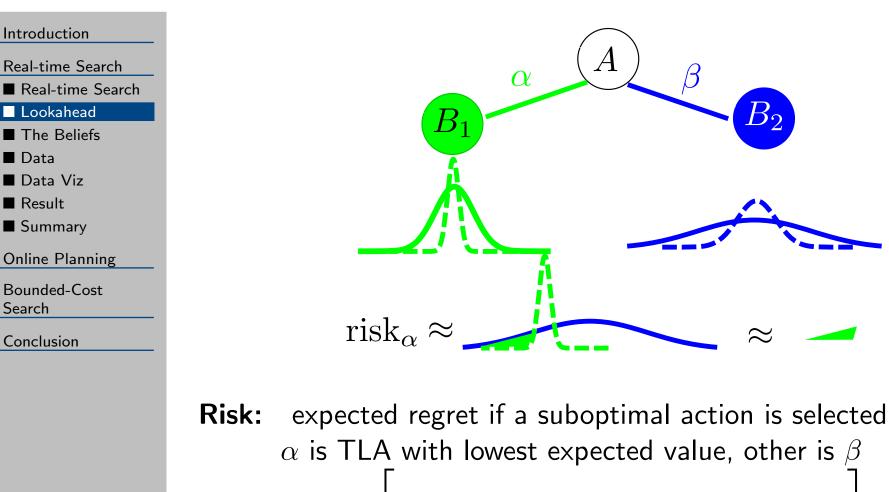


Risk: expected regret if a suboptimal action is selected α is TLA with lowest expected value, other is β $\mathbb{E}\left[\underbrace{f^*(\alpha) - f^*(\beta)}_{\text{what is our regret}} \mid \underbrace{f^*(\beta) < f^*(\alpha)}_{\text{in cases when } \alpha \text{ not best}}\right]$

Metareasoning for Heuristic Search Using Uncertainty – 16 / 50

Risk-based Lookahead Example

expand under α or β ?



Tianyi Gu (UNH)

Introduction

Lookahead The Beliefs

Data

Search

Conclusion

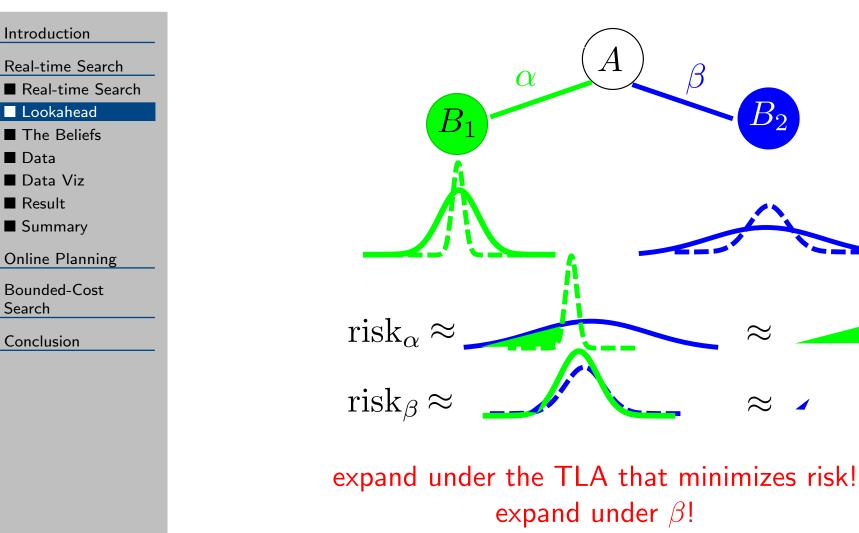
Data Viz Result ■ Summary

Metareasoning for Heuristic Search Using Uncertainty -16 / 50

 $\mathbb{E}\left[\underbrace{f^*(\alpha) - f^*(\beta)}_{\text{what is our regret}} \mid \underbrace{f^*(\beta) < f^*(\alpha)}_{\text{in cases when } \alpha \text{ not best}}\right]$

Risk-based Lookahead Example

expand under α or β ?



How to Form The Belief Distribution?

Introduction	Heuris
Real-time Search ■ Real-time Search	
Lookahead	
■ The Beliefs	
Data	
Data Viz	
Result	
Summary	
Online Planning	
Bounded-Cost Search	
Conclusion	

Heuristic values: scalar \rightarrow probability distribution (belief)

But where do beliefs come from?

- Real-time Search
- Lookahead
- The Beliefs
- 🗖 Data
- 🔳 Data Viz
- Result
- Summary

```
Online Planning
```

Bounded-Cost Search

Conclusion

Heuristic values: scalar \rightarrow probability distribution (belief)

But where do beliefs come from?

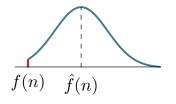
```
Nancy (Mitchell et al 2019):
```

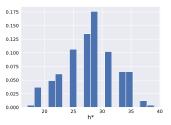
truncated Gaussian based on \hat{f} and f, few parameters allows online learning

My work: Data-Driven Nancy:

expressive histogram,

many parameters requires offline learning





Introd	uction
muou	uction

- Real-time Search
- Lookahead
- The Beliefs
- 🗌 Data
- Data Viz
- Result
- Summary
- Online Planning

Bounded-Cost Search

Conclusion

belief: distribution of h^* given features of state (h)

Gathering data:

run weighted-A* on random problems and collect all states for each observed h value:

pick most common 200 states from the collection, compute h^*

Introd	luction

- Real-time Search
- Lookahead
- The Beliefs
- 🗌 Data
- Data Viz
- Result
- Summary
- Online Planning
- Bounded-Cost Search

Conclusion

belief: distribution of h^* given features of state (h)

Gathering data:

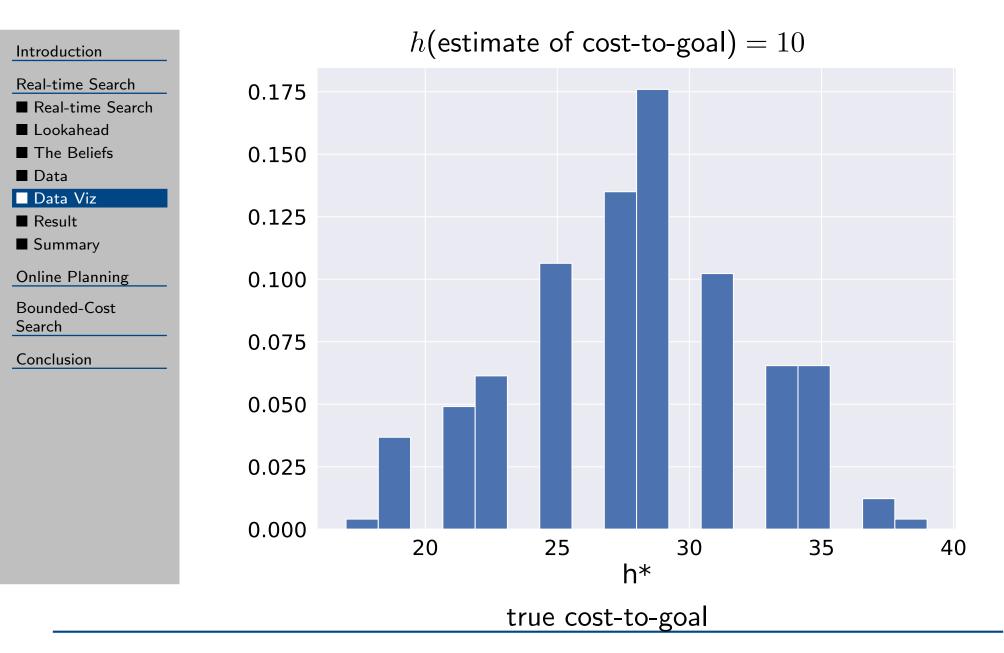
run weighted-A* on random problems and collect all states for each observed h value:

pick most common 200 states from the collection, compute h^*

compute h^* : need powerful optimal solver (eg. IDA*_{CR}² with pattern database heuristic)

²Reducing reexpansions in iterative-deepening search by controlling cutoff bounds, U.K. Sarkar, P.P. Chakrabarti, S. Ghose, S.C. De Sarkar, Artificial Intelligence, 1991.

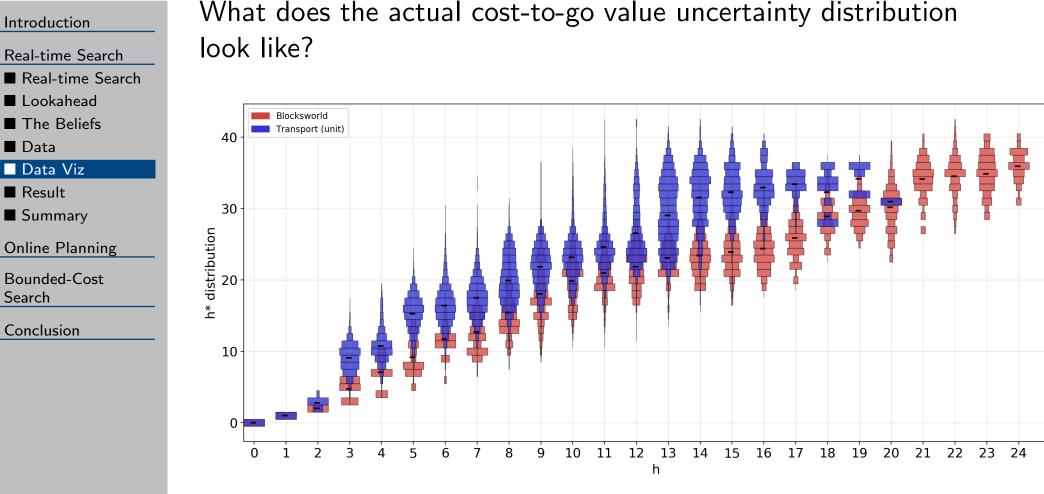
Example *h** distribution: Sliding Puzzle



Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – 19 / 50

Example *h** distribution: Transport vs Blocks World



Beliefs are different from domain to domain (Image credit: Leonhard Staut)

Introduction

Lookahead

■ The Beliefs

Data Viz Result

■ Summary

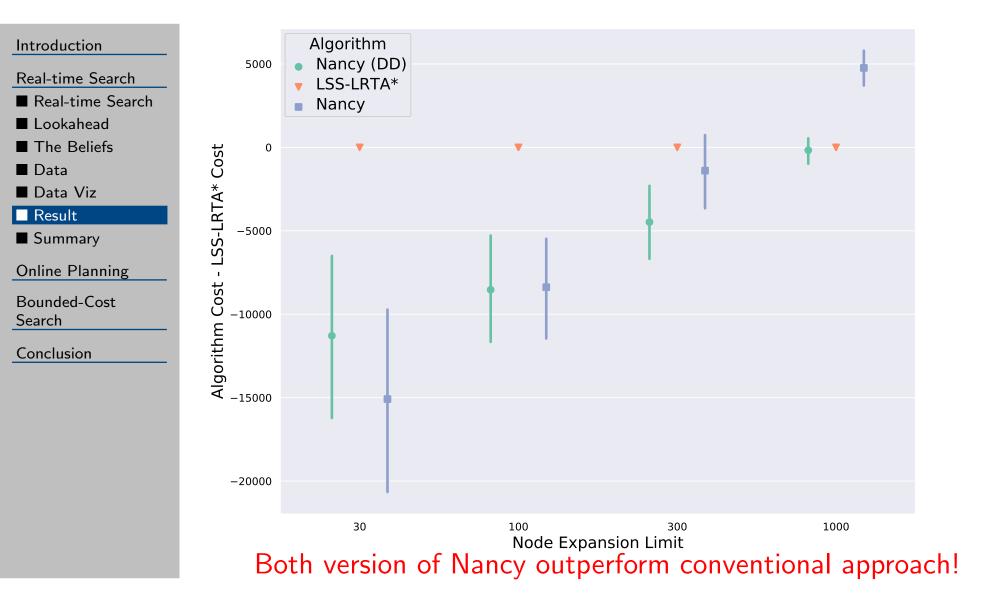
Data

Search

Conclusion

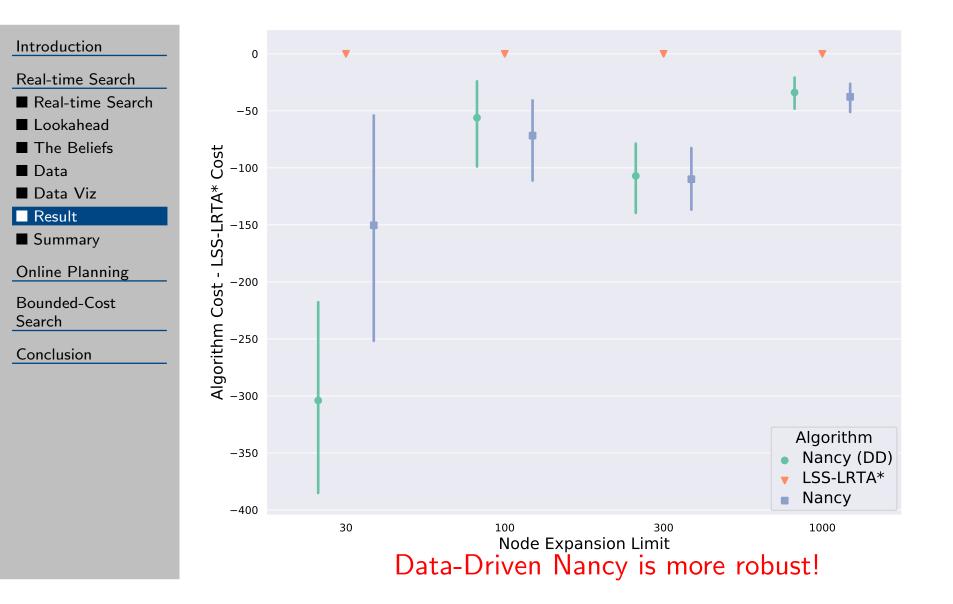
Metareasoning for Heuristic Search Using Uncertainty – 20 / 50

Results on Heavy Sliding Puzzle Problem



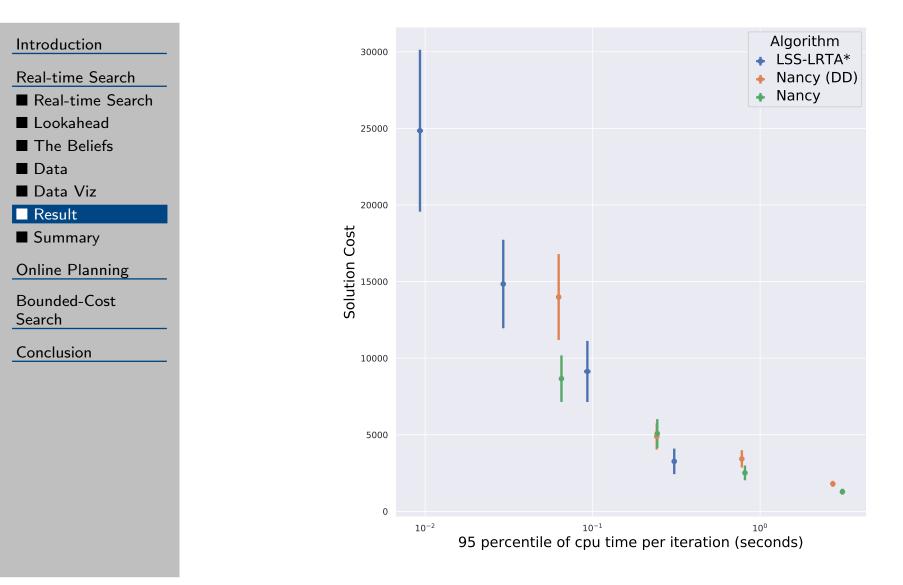
Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – 21 / 50



Introduction Real-time Search Real-time Search Lookahead	Domain	Lookahead	LSS- LRTA*	Nancy	Nancy (DD)
■ The Beliefs		100	46	33	38
■ Data ■ Data Viz	Blocksw.	300	36	30	34
Result		1000	30	32	27
Summary		100	631	615	496
Online Planning Bounded-Cost	Transport	300	519	559	485
Search	_	1000	499	567	422
Conclusion	Transport	100	48	40	31
	(unit-cost)	300	47	30	34
		1000	35	29	27
	Elevators (unit-cost)	100	50	35	39
		300	32	29	30
		1000	34	27	26
		Data-Driven Nancy is more robust!			
(Table credit: Maximilian Fickert, Leonhard Staut)					

CPU Time on Sliding Puzzle Problem



Nancy incurs overhead but worth it!

Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty - 24 / 50

Introduction

Real-time Search

- Real-time Search
- Lookahead
- The Beliefs
- 🔳 Data

Data Viz

Result

Summary

Online Planning

Bounded-Cost Search

Conclusion

Interval Estimation:

IE chooses the TLA with the lowest lower bound on the 95% confidence interval of the backed-up belief

	uction
Introd	liction
	action

- Real-time Search
- Lookahead
- The Beliefs
- 🔳 Data
- Data Viz
- Result
- Summary
- Online Planning
- Bounded-Cost Search

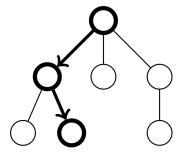
Conclusion

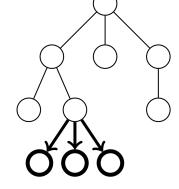
Interval Estimation:

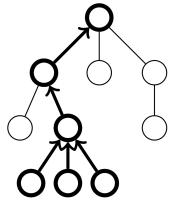
IE chooses the TLA with the lowest lower bound on the 95% confidence interval of the backed-up belief

MCTS

use THTS-WA* in the expansion phrase







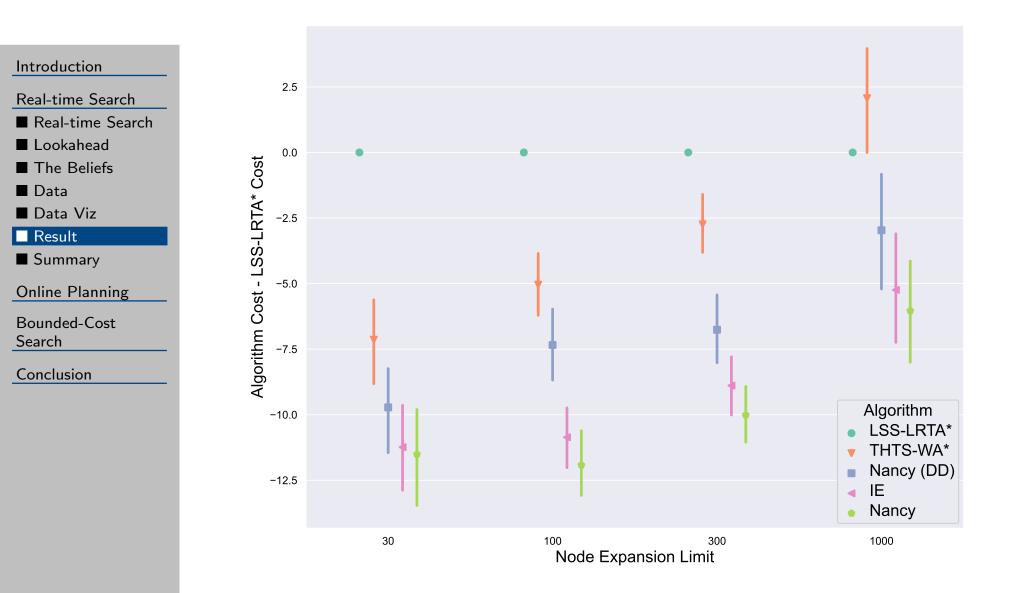
Action Selection

Initialization

Backup function

(Image credit: Tim Schulte and Thomas Keller)

Comparison to IE and MCTS on 40 Pancake



Reasoning about uncertainty helps!

Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty - 26 / 50

Summary

Introduction

Real-time Search

- Real-time Search
- Lookahead
- The Beliefs
- 🔳 Data
- Data Viz
- Result
- Summary

```
Online Planning
```

Bounded-Cost
Search

Conclusion

- Distributional methods provide significant improvements compared to conventional LSS-LRTA* in real-time search
 Nancy starts to explore an optimal way of doing online heuristic search
- Data-driven approach provides an alternative way to implement the Nancy framework, it performs better when assumption fails

Status of the work:

- 1. Beliefs We Can Believe In: Replacing Assumptions with Data in Real-Time Search. AAAI Conference on Artificial Intelligence (AAAI), 2020.
- 2. *Real-time Planning as Data-driven Decision-making.* ICAPS Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL), 2020.
- 3. In preparation: *Real-time Planning as Decision-making Under Heuristic Value Uncertainty*, Journal of Artificial Intelligence Research (JAIR)

Introduction

Real-time Search

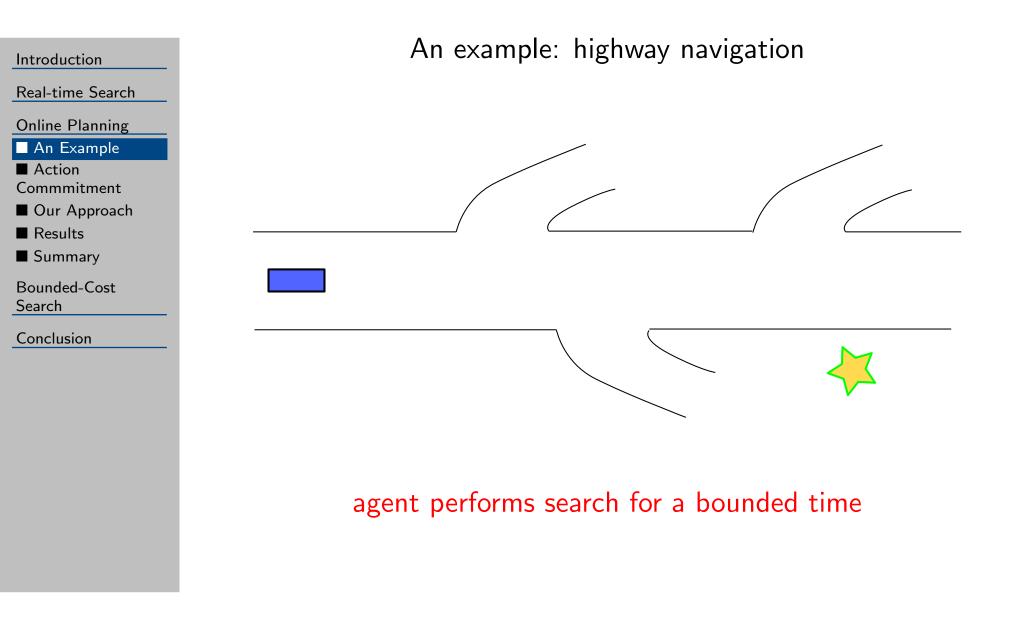
Online Planning

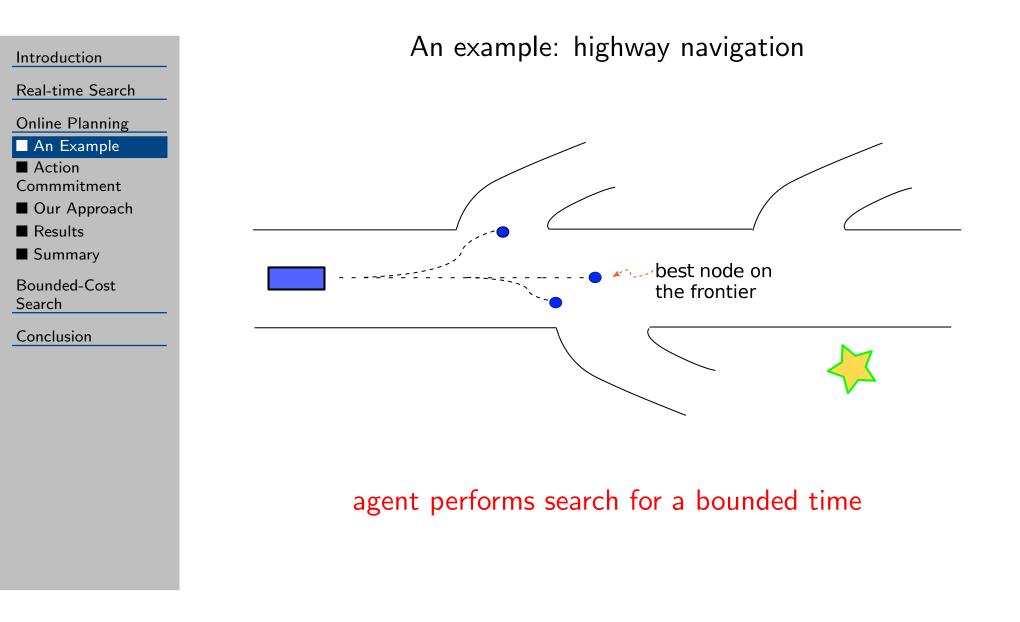
- An Example
- Action
- Commitment
- Our Approach
- Results
- Summary
- Bounded-Cost Search

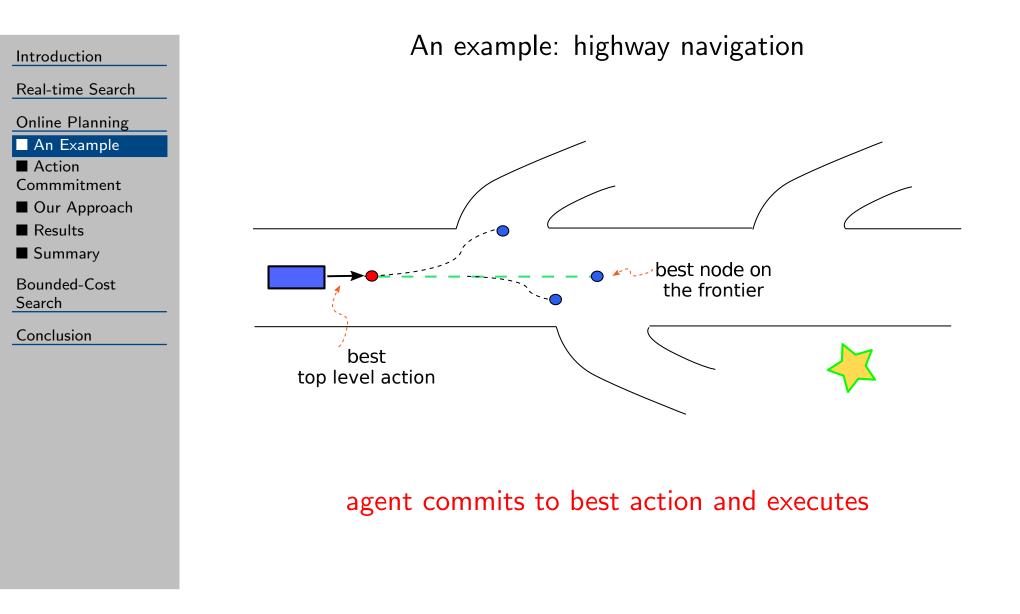
Conclusion

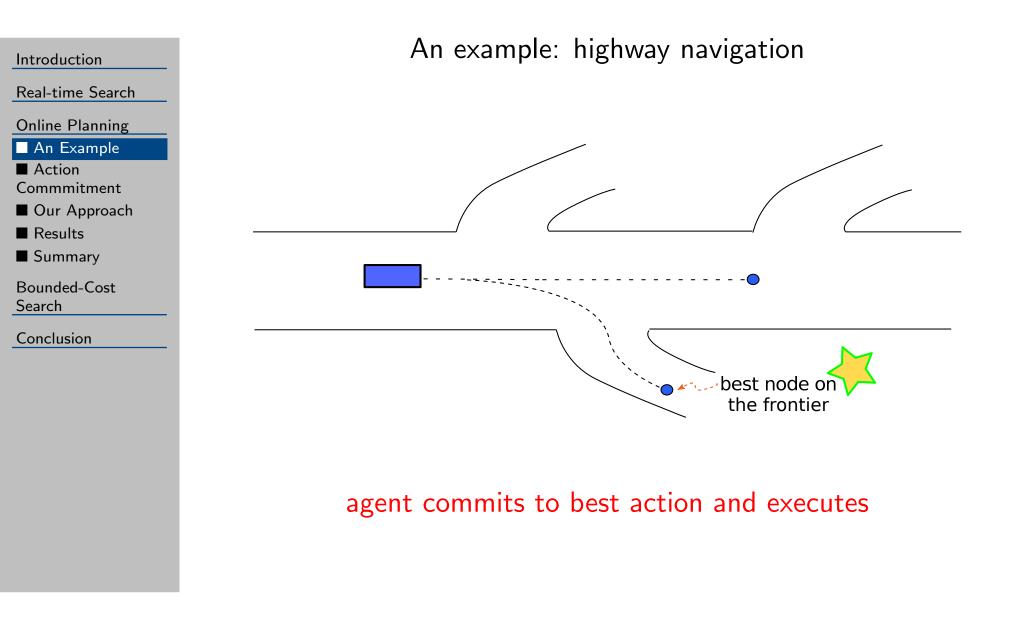
When to Commit to an Action in Online Planning?

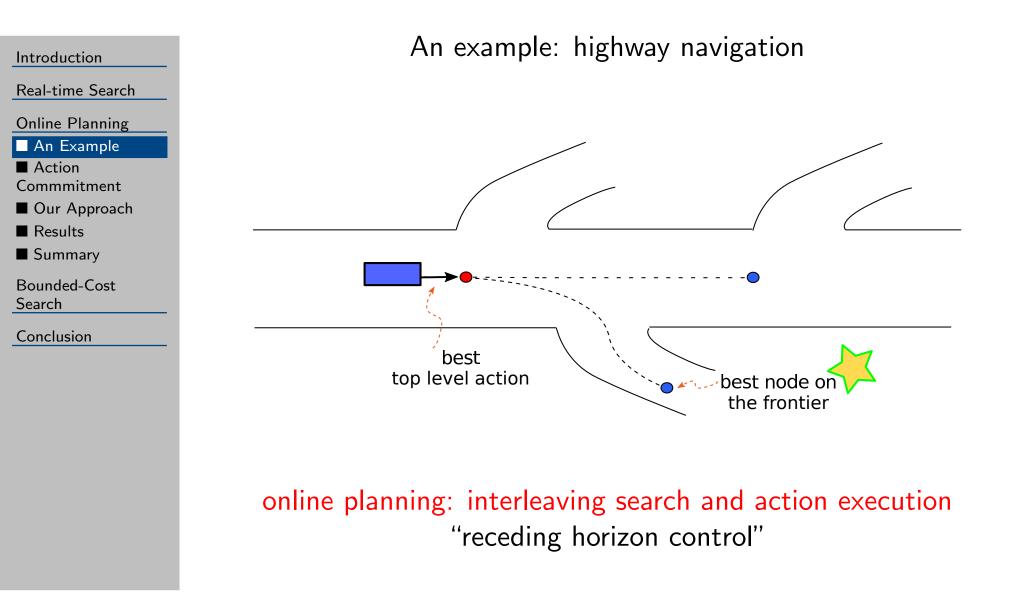
Joint work with Shahaf Shperberg, Eyal Shlomo Shimony, Wheeler Ruml and Erez Karpas











Introduction

Real-time Search

Online Planning

■ An Example

Action

Commmitment

■ Our Approach

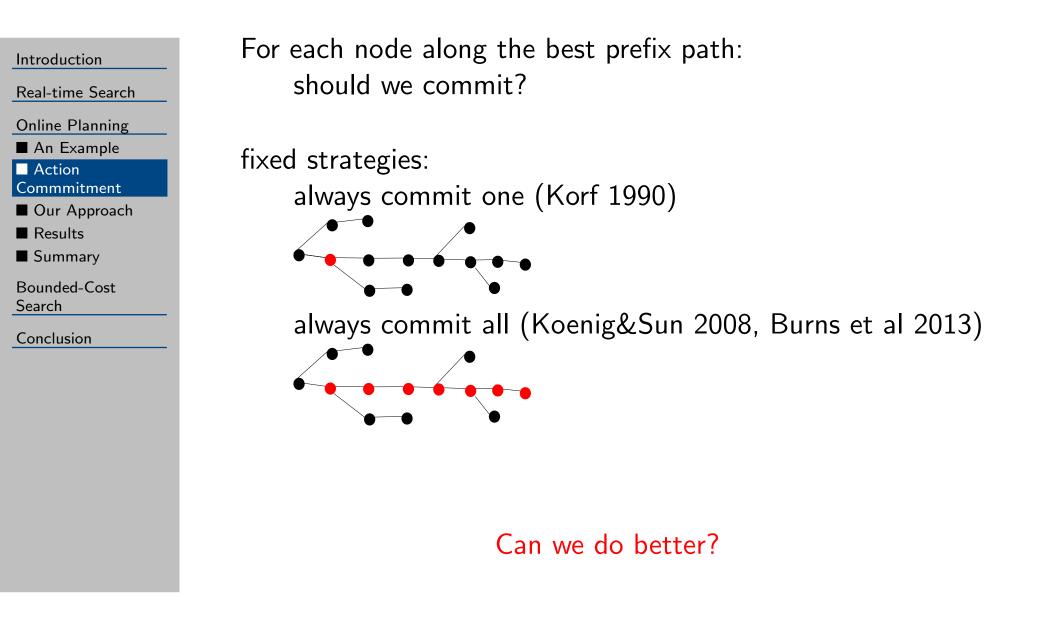
Results

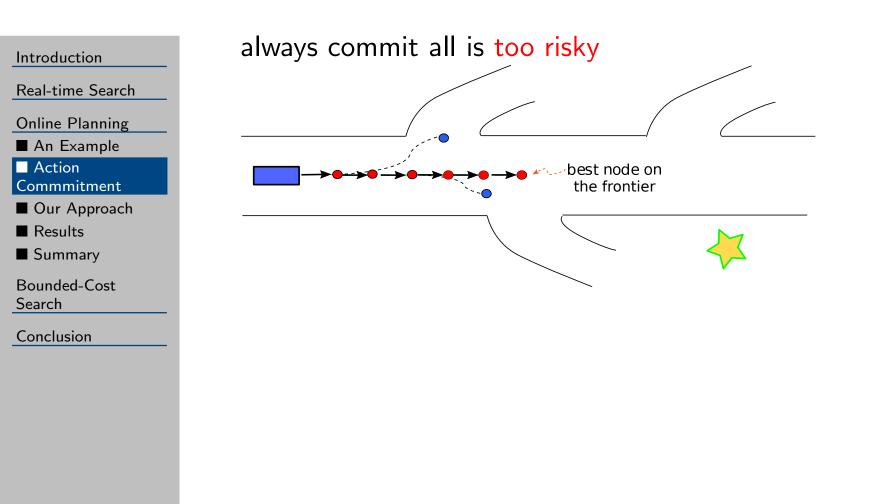
■ Summary

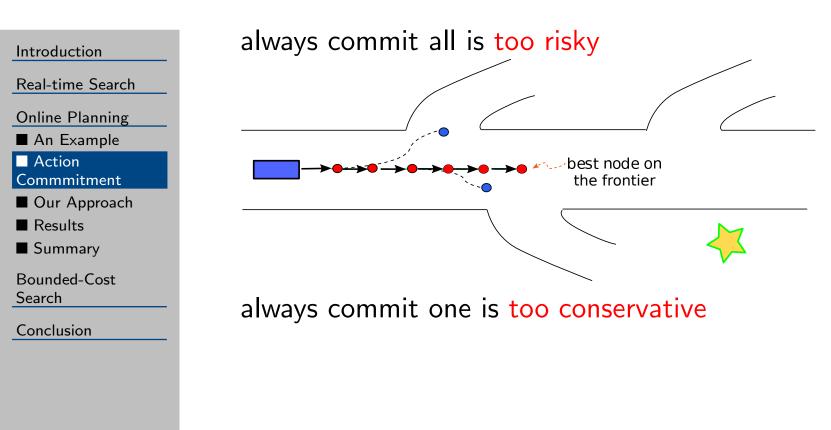
Bounded-Cost Search

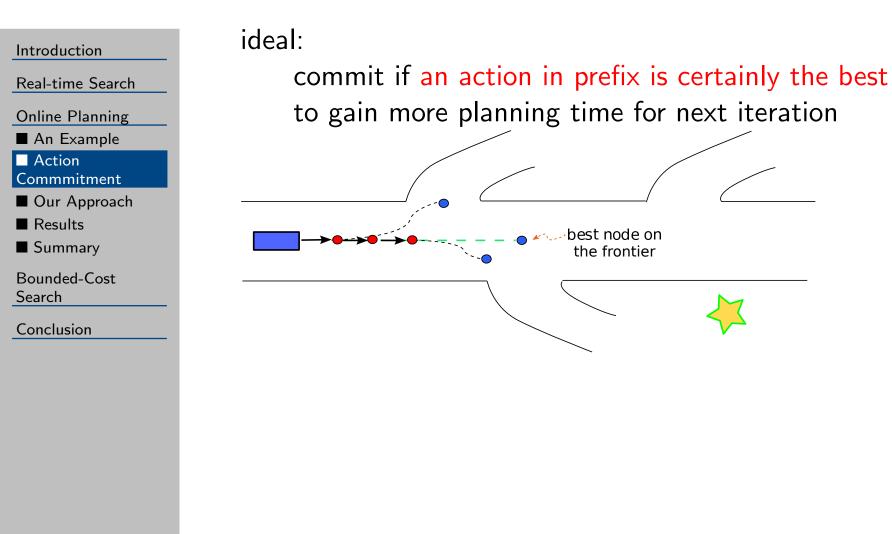
Conclusion

For each node along the best prefix path: should we commit?

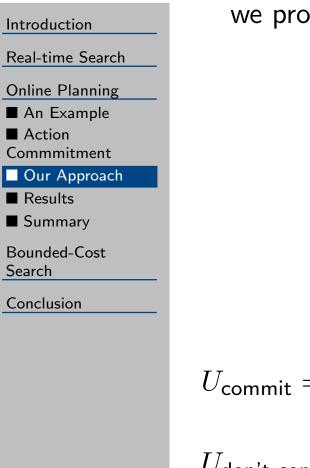




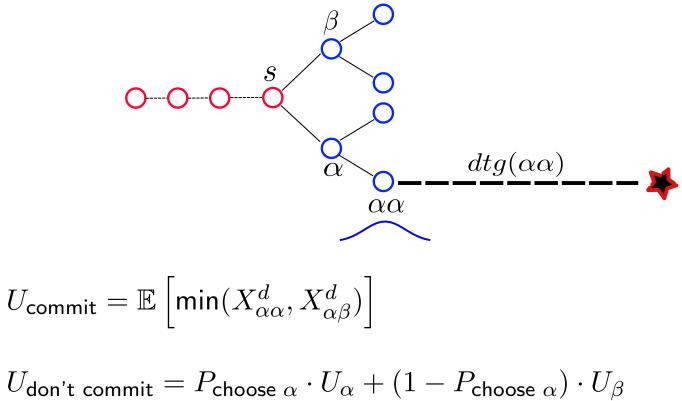




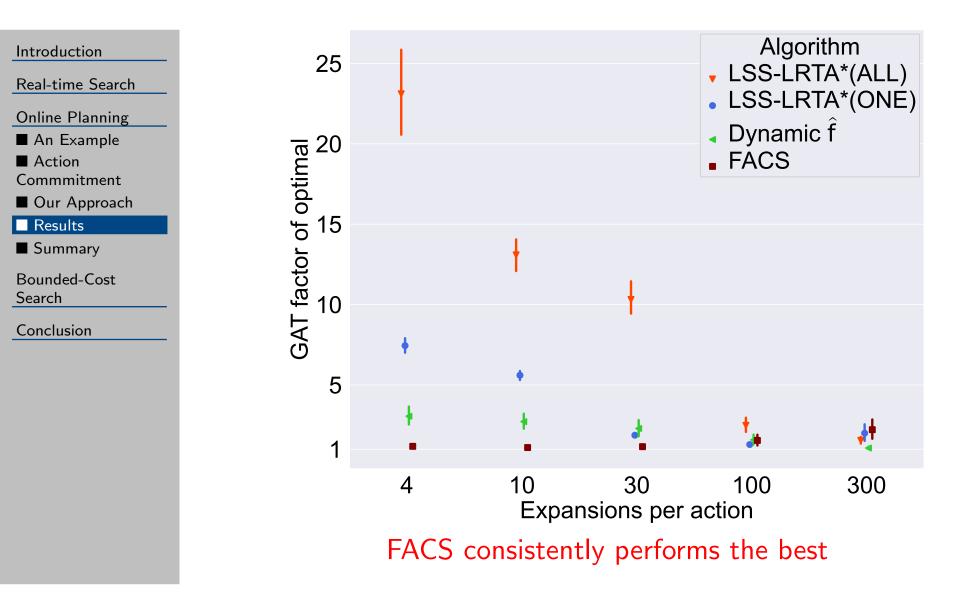
Our Approach: Flexible Action Commitment Search (FACS)



we propose a principled way to make meta-level decision



Results



Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – 34 / 50

Summary

Introduction Real-time Search Online Planning An Example Action

- Commitment
- Our Approach
- Results
- Summary

Bounded-Cost Search

Conclusion

- FACS starts to explore a principled way of doing online action commitment by reasoning uncertainty
 - FACS is better than fixed baseline strategies in synthetic grid pathfinding scenarios.
- Deliberation on how to allocate search effort can benefit online planning

Status of the work:

- 1. When to Commit to an Action in Online Planning. ICAPS Workshop on Integrating, Planning, Acting, and Execution (IntEx-21), 2021
- 2. In preparation: *When to Commit to an Action in Online Planning.*, International Symposium on Combinatorial Search (SoCS 2022)
- 3. In preparation: *Situated Safe Interval Path Planning for Dynamic Environments.*, International Joint Conference on Artificial Intelligence (IJCAI 2022)

Introduction

Real-time Search

Online Planning

Bounded-Cost Search

■ State of The Art

■ XES

Result

Conclusion

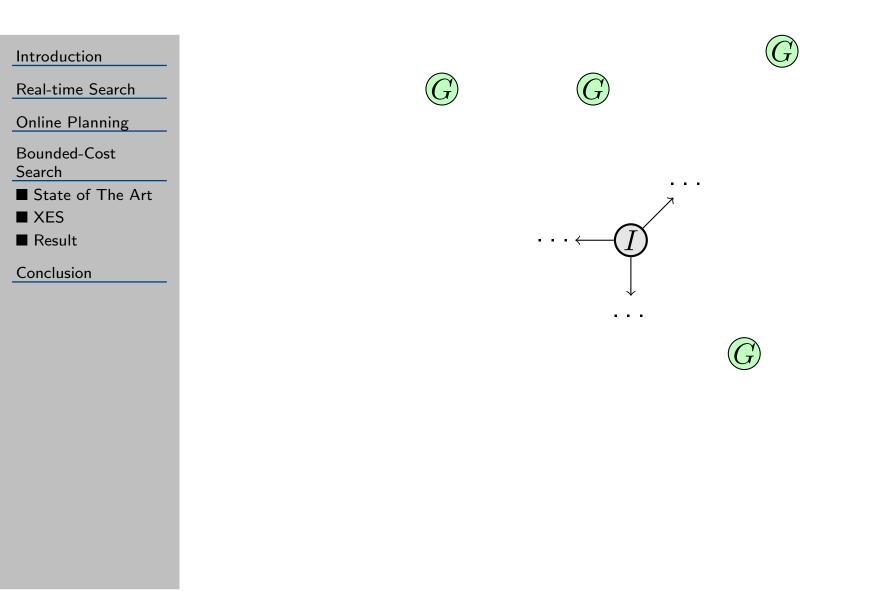
Bounded-Cost Search Using Estimates of Uncertainty

Joint work with Maximilian Fickert and Wheeler Ruml

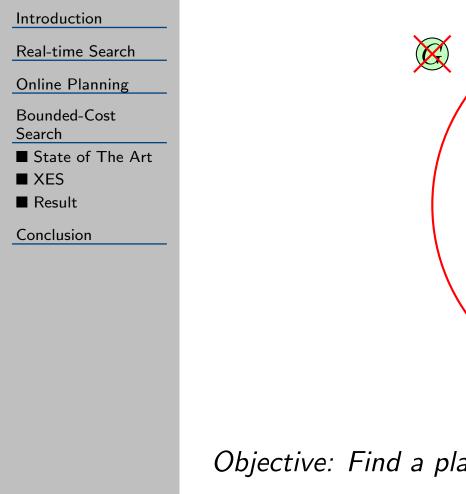
Tianyi Gu (UNH)

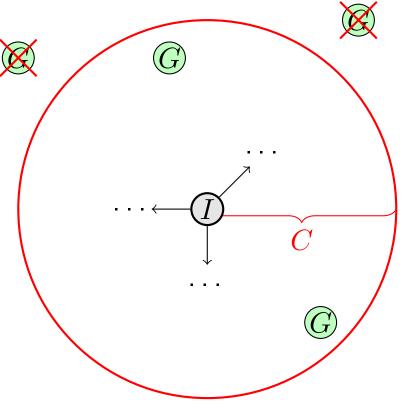
Metareasoning for Heuristic Search Using Uncertainty – 36 / 50

What is Bounded-Cost Search?



What is Bounded-Cost Search?





Objective: Find a plan with cost at most C as fast as possible.

State of The Art

Introduction

Real-time Search

Online Planning

Bounded-Cost Search

State of The Art

XES

Result

Conclusion

Potential Search:

best first search on $f_{lnr}(n) = \frac{h(n)}{C-g(n)}$ does not consider search effort

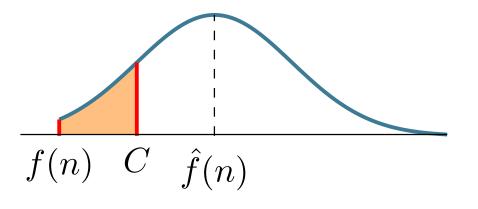
BEES:

expand the node, among those estimated to be within the bound, that is closest to a goal does not consider the uncertainty of its estimate (brittle)

Our Approach: Expected Effort Search

Introduction	1.
Real-time Search	bc
Online Planning	
Bounded-Cost Search	
■ State of The Art	
■ XES	
■ Result	
Conclusion	

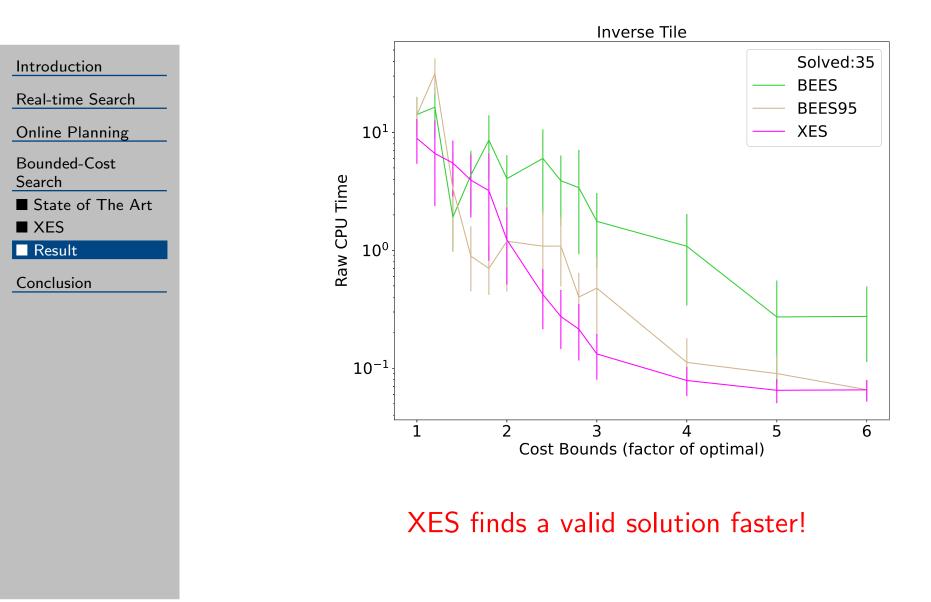
. Explicitly estimate the probability of finding a solution within bound $p(\boldsymbol{n})$



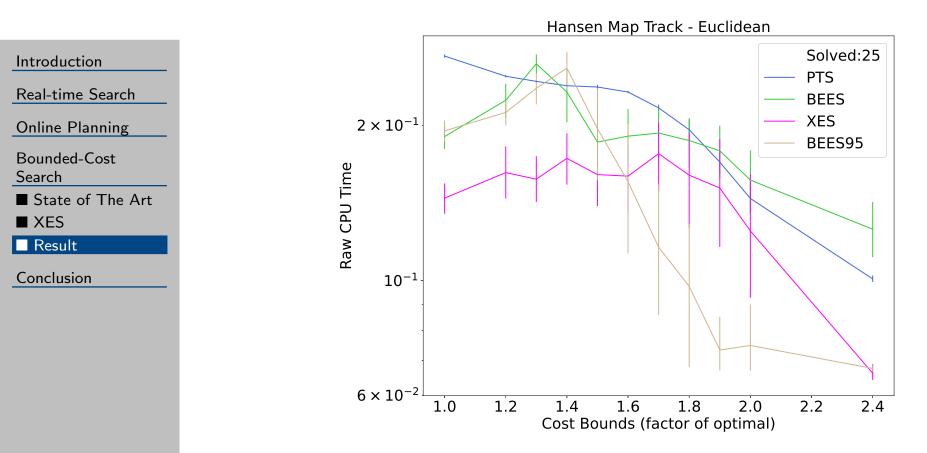
- 2. estimate total search effort by d(n)
- 3. best first search on expected search effort d(n)/p(n)

optimal efficiency proof under three unrealistic assumptions (see dissertation for detail)

Our Approach: Expected Effort Search



Our Approach: Expected Effort Search



Status of the work:

- 1. Bounded-Cost Search Using Estimates of Uncertainty. International Joint Conference on Artificial Intelligence (IJCAI), 2021.
- 2. under review: *New Results in Bounded-Suboptimal Search*. AAAI Conference on Artificial Intelligence (AAAI), 2022.

Introduction

Real-time Search

Online Planning

Bounded-Cost Search

Conclusion

Conclusions

Conclusion

Tianyi Gu (UNH)

Conclusion

Introduction Real-time Search Online Planning Bounded-Cost Search

Conclusion

Conclusions

The thesis of my dissertation: heuristic search can benefit from representing uncertainty

- real-time search
- concurrent planning and execution
- I bounded-cost search

Questions?

Introduction

Real-time Search

Online Planning

Bounded-Cost Search

Conclusion

Questions

Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – 43 / 50

Introduction

Real-time Search

Online Planning

Bounded-Cost Search

Conclusion

Back-up Slides

f-hat

■ Expected Effort Search (XES)

■ FACS Detail

■ FACS Belief

■ FACS Decision

■ FACS Domain

Back-up Slides

How To Compute F-Hat

Introduction

Real-time Search

Online Planning

Bounded-Cost Search

Conclusion

Back-up Slides

- 🗌 f-hat
- Expected Effort Search (XES)
- FACS Detail
- FACS Belief

FACS Decision

■ FACS Domain

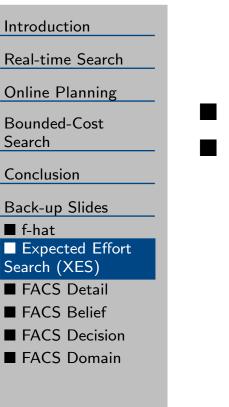
$$\hat{f} = g + \hat{h} = g + h + \epsilon d$$

\hat{f} is the expected value for optimal plan cost

Introduction	
Real-time Search	
Online Planning	_
Bounded-Cost Search	
Conclusion	
Back-up Slides	
■ f-hat	
■ Expected Effort Search (XES)	
■ FACS Detail	
■ FACS Belief	
■ FACS Decision	
■ FACS Domain	

Best-first search on the expected effort: $\frac{T}{p}$

T(n): search effort to find a solution under n
 p(n): probability that n leads to a solution within C



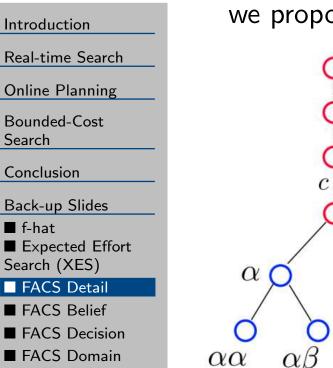
Best-first search on the expected effort: $\frac{T}{p}$

T(n): search effort to find a solution under np(n): probability that n leads to a solution within C

$$\begin{array}{c} n_1 \\ n_1 \end{array} \begin{array}{c} T = 10 \\ p = 0.5 \end{array} \quad \rightsquigarrow 20 \end{array}$$

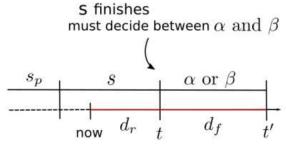
$$\begin{array}{c} n_2 \\ n_2 \\ p = 0.25 \end{array} \rightsquigarrow 24 \end{array}$$

Our Approach: Flexible Action Commitment Search (FACS)

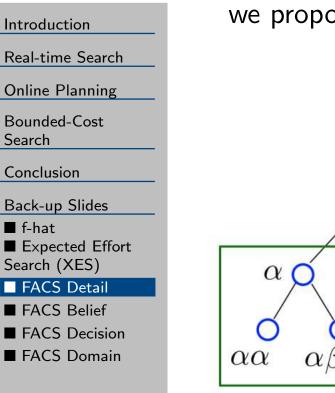


we propose a principled way to make meta-level decision

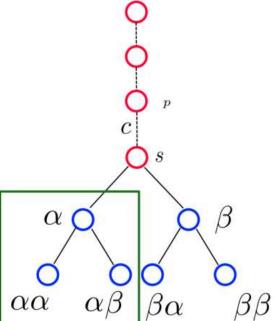


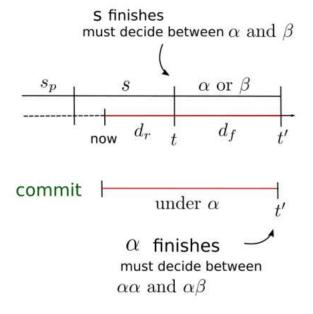


Our Approach: Flexible Action Commitment Search (FACS)

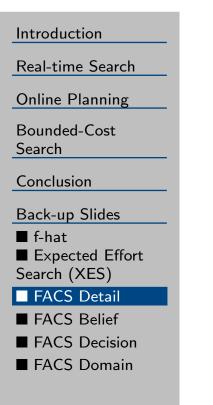


we propose a principled way to make meta-level decision

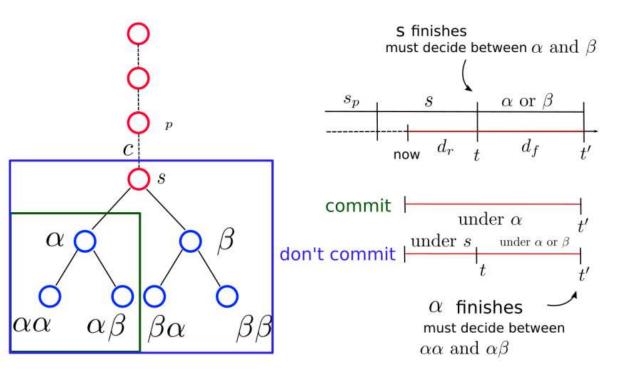




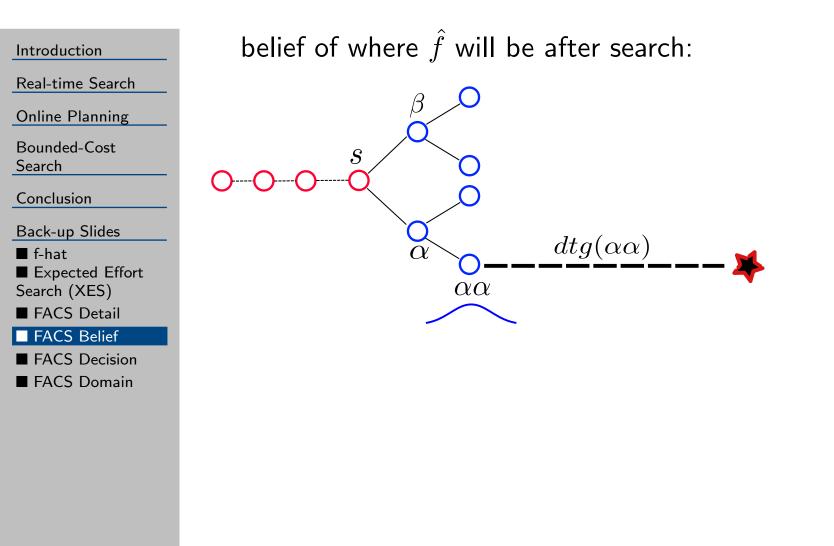
Our Approach: Flexible Action Commitment Search (FACS)



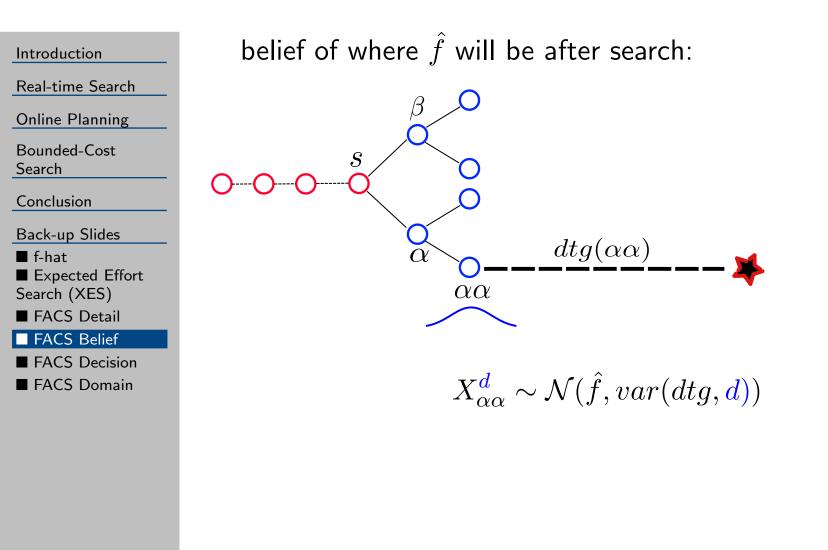
we propose a principled way to make meta-level decision



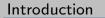
FACS: The Effect of Search



FACS: The Effect of Search



FACS: Compute Utility



Real-time Search

Online Planning

Bounded-Cost Search

Conclusion

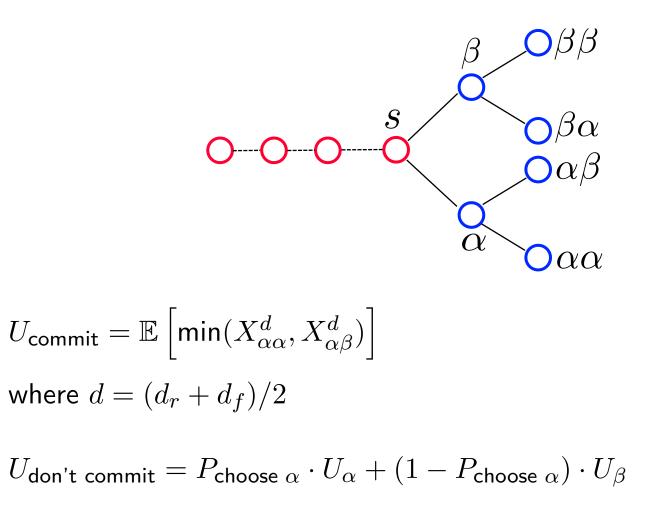
Back-up Slides

- f-hat
- Expected Effort Search (XES)
- FACS Detail

■ FACS Belief

FACS Decision

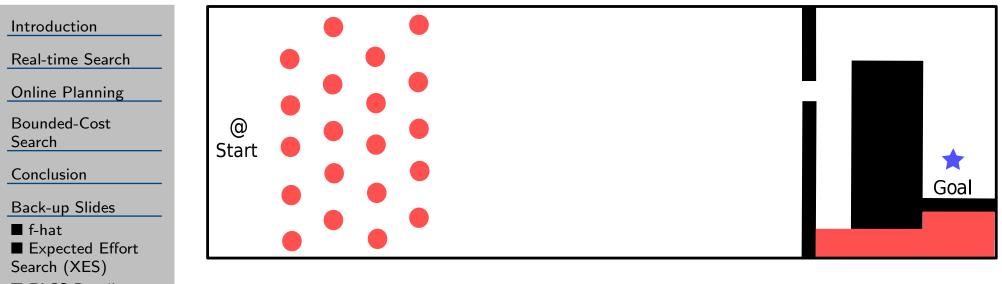
■ FACS Domain



Tianyi Gu (UNH)

Metareasoning for Heuristic Search Using Uncertainty – 49 / 50

Synthetic Grid Pathfinding



- FACS Detail
- FACS Belief
- FACS Decision
- FACS Domain

- Left: tar pit area \rightarrow high cost for reckless committing
- Right: corridor area \rightarrow need long lookahead to observe the local minima
- Middle: empty area \rightarrow gain lookahead, no harm to commit