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heuristic search can benefit from representing uncertainty

scalar heuristic → belief distribution that represents uncertainty
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heuristic search can benefit from representing uncertainty

scalar heuristic → belief distribution that represents uncertainty

show in three problem settings:

■ real-time heuristic search
■ concurrent planning and execution
■ bounded-cost search
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planning is a model-based AI method, it models the environment
as a state space and finds a sequence of actions that
accomplishes some objective
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heuristic search: a planning approach

planning is a model-based AI method, it models the environment
as a state space and finds a sequence of actions that
accomplishes some objective

heuristic search:
{states, actions} → {V, E}
planning problem → find a path from sinit to {sgoal}
guide graph search by a heuristic estimate of cost-to-goal
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heuristic search associates costs with states,
used to guide search

(Image credit: Andrew Mitchell)
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A*: expands the node with minimal f value
returns optimal path
optimal search can take too long!
because it must expand every node with f < C∗1

1
How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.
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A*: expands the node with minimal f value
returns optimal path
optimal search can take too long!
because it must expand every node with f < C∗1

What if we don’t have time?

1
How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.
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- large state space

- limited resource

- hard time bound
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1. real-time heuristic search
time bound

2. concurrent planning and execution
system must be stay under control

3. bounded-cost search
cost bound
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1. real-time heuristic search
time bound

2. concurrent planning and execution
system must be stay under control

3. bounded-cost search
cost bound

metareasoning:
reasoning about which reasoning to do
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planning
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Make sure we are not dying from overthink and never act!
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bounded rationality → uncertainty

Intuitively, distribution can be better than scalar-value based
methods because it quantifies uncertainty, which is what
search resolves.

0

0

0

f̂ is expected value

Should an agent expand nodes under α or β?
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bounded rationality → uncertainty

Intuitively, distribution can be better than scalar-value based
methods because it quantifies uncertainty, which is what
search resolves.

f̂ is expected value

Should an agent expand nodes under α or β?
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heuristic search can benefit from representing uncertainty

■ improving real-time search by representing uncertainty
DDNancy: AAAI-20 *

■ improving concurrent planing and execution by representing
uncertainty

FACS: IntEx-21
■ improving bounded-cost search by representing uncertainty

XES: IJCAI-21



Data-driven Real-time Search as

Decision-making Under Uncertainty:

Data-driven Nancy

Joint work with Maximilian Fickert, Leonhard Staut,
Sai Lekyang, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik
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An example: path finding

agent

goal

agent performs search for a bounded time
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An example: path finding

agent

goal
search frontier

agent performs search for a bounded time
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An example: path finding

agent

goal
search frontier
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top level action

agent commits to best action and executes
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An example: path finding

agent
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agent commits to best action and executes
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An example: path finding

agent

goal

search frontier

top level action

online planning: interleaving search and action execution
“receding horizon control”
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1. Lookahead Phase:
expands nodes with minimum f
to explore the search space
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select top level action with minimum f to execute

3. Learning Phase:
update heuristic values
(to escape local minima and avoid infinite loops)
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proved to be complete for consistent heuristic
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three phases:

1. Lookahead Phase:
expands nodes with minimum f
to explore the search space

2. Decision-making Phase:
backup the minimum f from search frontier (‘minimin’)
select top level action with minimum f to execute

3. Learning Phase:
update heuristic values
(to escape local minima and avoid infinite loops)

repeat until at a goal

proved to be complete for consistent heuristic

derived from offline search, but optimal for online?
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f̂ is expected value

Should an agent expand nodes under α or β?
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f̂ is expected value

Should an agent expand nodes under α or β?

f̂ is not the answer: what to do?
want to maximize value of information

need to consider uncertainty of estimates
Risk-based evaluation: minimize expected regret
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expand under α or β?
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expand under α or β?

need 2 things:
1) current beliefs
2) estimate of how beliefs might change with search
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expand under α or β?

need 2 things:
1) current beliefs
2) estimate of how beliefs might change with search
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expand under α or β?

Risk: expected regret if a suboptimal action is selected
α is TLA with lowest expected value, other is β

E




f

∗(α)− f∗(β)
︸ ︷︷ ︸

what is our regret

∣
∣ f∗(β) < f∗(α)

︸ ︷︷ ︸

in cases when α not best
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expand under α or β?

expand under the TLA that minimizes risk!
expand under β!
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Heuristic values: scalar → probability distribution (belief)

But where do beliefs come from?
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Heuristic values: scalar → probability distribution (belief)

But where do beliefs come from?

Nancy (Mitchell et al 2019):

truncated Gaussian based on f̂ and f ,
few parameters allows online learning

My work: Data-Driven Nancy:

expressive histogram,
many parameters requires offline learning

f(n) f̂(n)

20 25 30 35 40
h*

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
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belief: distribution of h* given features of state (h)

Gathering data:
run weighted-A* on random problems and collect all states
for each observed h value:

pick most common 200 states from the collection,
compute h*
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belief: distribution of h* given features of state (h)

Gathering data:
run weighted-A* on random problems and collect all states
for each observed h value:

pick most common 200 states from the collection,
compute h*

compute h*: need powerful optimal solver (eg. IDA*CR
2 with

pattern database heuristic)

2
Reducing reexpansions in iterative-deepening search by controlling cutoff bounds, U.K. Sarkar, P.P.

Chakrabarti, S. Ghose, S.C. De Sarkar, Artificial Intelligence, 1991.
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h(estimate of cost-to-goal) = 10

20 25 30 35 40
h*

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

true cost-to-goal
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What does the actual cost-to-go value uncertainty distribution
look like?

Beliefs are different from domain to domain
(Image credit: Leonhard Staut)
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Both version of Nancy outperform conventional approach!
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Data-Driven Nancy is more robust!
(Table credit: Maximilian Fickert, Leonhard Staut)
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Nancy incurs overhead but worth it!
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Interval Estimation:
IE chooses the TLA with the lowest lower bound on the
95% confidence interval of the backed-up belief
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Interval Estimation:
IE chooses the TLA with the lowest lower bound on the
95% confidence interval of the backed-up belief

MCTS
use THTS-WA* in the expansion phrase

Action Selection Initialization Backup function

(Image credit: Tim Schulte and Thomas Keller)
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Reasoning about uncertainty helps!
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■ Distributional methods provide significant improvements
compared to conventional LSS-LRTA* in real-time search

■ Nancy starts to explore an optimal way of doing online
heuristic search

■ Data-driven approach provides an alternative way to
implement the Nancy framework, it performs better when
assumption fails

Status of the work:

1. Beliefs We Can Believe In: Replacing Assumptions with Data in

Real-Time Search. AAAI Conference on Artificial Intelligence
(AAAI), 2020.

2. Real-time Planning as Data-driven Decision-making. ICAPS
Workshop on Bridging the Gap Between AI Planning and
Reinforcement Learning (PRL), 2020.

3. In preparation: Real-time Planning as Decision-making Under

Heuristic Value Uncertainty, Journal of Artificial Intelligence
Research (JAIR)



When to Commit to an Action in Online

Planning?

Joint work with Shahaf Shperberg, Eyal Shlomo Shimony,
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An example: highway navigation

 
the frontier

top level action

online planning: interleaving search and action execution
“receding horizon control”
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For each node along the best prefix path:
should we commit?

fixed strategies:
always commit one (Korf 1990)

always commit all (Koenig&Sun 2008, Burns et al 2013)

Can we do better?
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always commit all is too risky

� � � 	 
 � � � � 
  
the frontier

always commit one is too conservative
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ideal:
commit if an action in prefix is certainly the best
to gain more planning time for next iteration

 � � � � � � � � �  
the frontier
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we propose a principled way to make meta-level decision

Ucommit = E

[

min(Xd
αα, X

d
αβ)

]

Udon’t commit = Pchoose α · Uα + (1− Pchoose α) · Uβ
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■ FACS starts to explore a principled way of doing online
action commitment by reasoning uncertainty

■ FACS is better than fixed baseline strategies in synthetic grid
pathfinding scenarios.

■ Deliberation on how to allocate search effort can benefit
online planning

Status of the work:

1. When to Commit to an Action in Online Planning. ICAPS
Workshop on Integrating, Planning, Acting, and Execution
(IntEx-21), 2021

2. In preparation: When to Commit to an Action in Online Planning.,
International Symposium on Combinatorial Search (SoCS 2022)

3. In preparation: Situated Safe Interval Path Planning for Dynamic

Environments., International Joint Conference on Artificial
Intelligence (IJCAI 2022)



Bounded-Cost Search Using Estimates of
Uncertainty

Joint work with Maximilian Fickert and Wheeler Ruml

Introduction

Real-time Search

Online Planning

Bounded-Cost
Search

■ State of The Art

■ XES

■ Result

Conclusion

Tianyi Gu (UNH) Metareasoning for Heuristic Search Using Uncertainty – 36 / 50



What is Bounded-Cost Search?

Introduction

Real-time Search

Online Planning

Bounded-Cost
Search

■ State of The Art

■ XES

■ Result

Conclusion

Tianyi Gu (UNH) Metareasoning for Heuristic Search Using Uncertainty – 37 / 50

I

. . .

. . .

. . .

G

GG

G



What is Bounded-Cost Search?

Introduction

Real-time Search

Online Planning

Bounded-Cost
Search

■ State of The Art

■ XES

■ Result

Conclusion

Tianyi Gu (UNH) Metareasoning for Heuristic Search Using Uncertainty – 37 / 50

C
I

. . .

. . .

. . .

G

GG

G

Objective: Find a plan with cost at most C as fast as possible.
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Potential Search:
best first search on flnr (n) =

h(n)
C−g(n)

does not consider search effort
BEES:

expand the node, among those estimated
to be within the bound, that is closest to a goal
does not consider the uncertainty of its estimate (brittle)
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1. Explicitly estimate the probability of finding a solution within
bound p(n)

f(n) C f̂(n)

2. estimate total search effort by d(n)
3. best first search on expected search effort d(n)/p(n)

optimal efficiency proof under three unrealistic assumptions (see
dissertation for detail)
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Status of the work:

1. Bounded-Cost Search Using Estimates of Uncertainty. International
Joint Conference on Artificial Intelligence (IJCAI), 2021.

2. under review: New Results in Bounded-Suboptimal Search. AAAI
Conference on Artificial Intelligence (AAAI), 2022.
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The thesis of my dissertation:
heuristic search can benefit from representing uncertainty

■ real-time search
■ concurrent planning and execution
■ bounded-cost search
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f̂ = g + ĥ = g + h+ ǫd

f̂ is the expected value for optimal plan cost
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Best-first search on the expected effort: T
p

■ T (n): search effort to find a solution under n
■ p(n): probability that n leads to a solution within C
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Best-first search on the expected effort: T
p

■ T (n): search effort to find a solution under n
■ p(n): probability that n leads to a solution within C

n1

n2

T = 10

p = 0.5

T = 6

p = 0.25
 24

 20
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belief of where f̂ will be after search:
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belief of where f̂ will be after search:

Xd
αα ∼ N (f̂ , var(dtg, d))
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Ucommit = E

[

min(Xd
αα, X

d
αβ)

]

where d = (dr + df )/2

Udon’t commit = Pchoose α · Uα + (1− Pchoose α) · Uβ

commit when U t′

commit > U t′

don’t commit
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Start

■ Left: tar pit area → high cost for reckless committing
■ Right: corridor area → need long lookahead to observe the

local minima
■ Middle: empty area → gain lookahead, no harm to commit
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