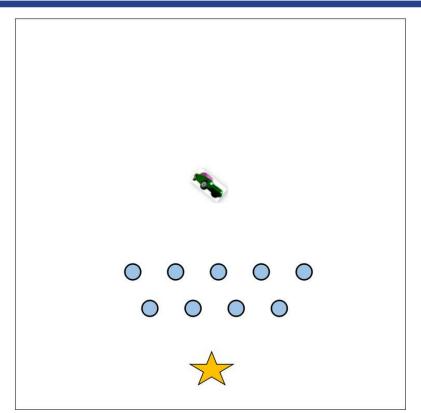
An Effort Bias for Sampling-based Motion Planning

Scott Kiesel and Tianyi Gu and Wheeler Ruml

Department of Computer Science

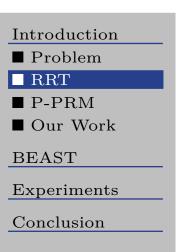
Grateful thanks to NSF (grant 1150068) for support

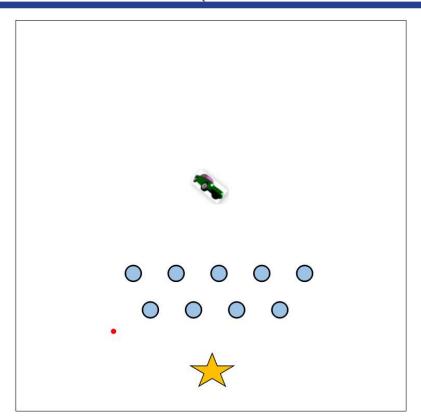
The Problem: Fast Kinodynamic Motion Planning



- Given: environment, start state, goal region, vehicle dynamics
- Find: dynamically-feasible continuous trajectory (sequence of piece-wise constant controls) as quickly as possible!

Growing a Motion Tree: RRT (LaValle & Kuffner 2001)





■ Generate a (random) sample state

Introduction

■ Problem
■ RRT

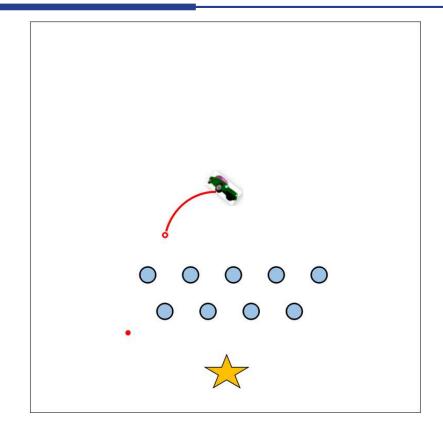
■ P-PRM

■ Our Work

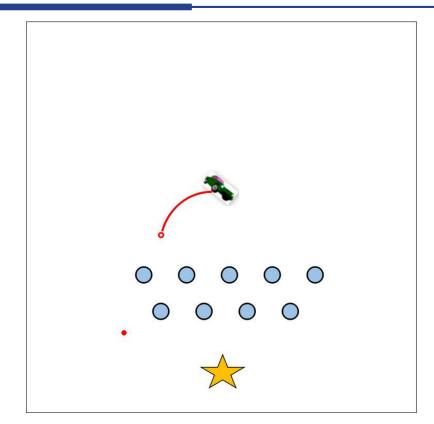
BEAST

Experiments

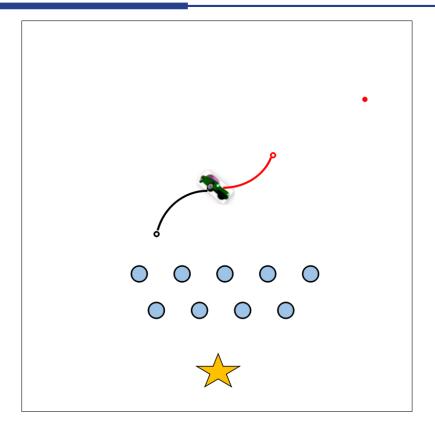
Conclusion



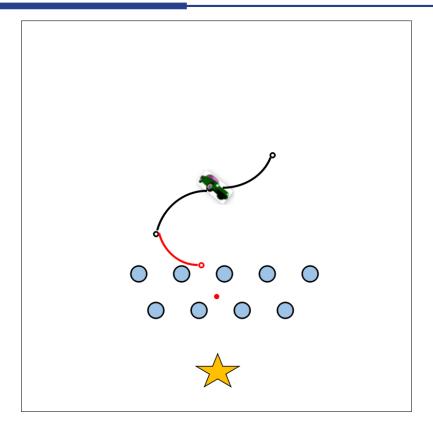
- Generate a (random) sample state
- Select nearest state in the existing motion tree



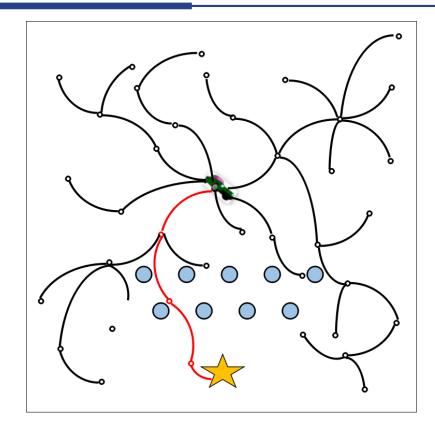
- Generate a (random) sample state
- Select nearest state in the existing motion tree
- Steer toward the sample, generating new state (or use several random controls if no steering)



- Generate a (random) sample state
- Select nearest state in the existing motion tree
- Steer toward the sample, generating new state (or use best of several random controls if no steering)
- Repeatedly grow the motion tree until it touchs the goal region



- Generate a (random) sample state
- Select nearest state in the existing motion tree
- Steer toward the sample, generating new state (or use best of several random controls if no steering)
- Repeatedly grow the motion tree until it touchs the goal region



- Generate a (random) sample state
- Select nearest state in the existing motion tree
- Steer toward the sample, generating new state (or use a random control if no steering)
- Repeatedly grow the motion tree until it touchs the goal region

Introduction

■ Problem

BRT

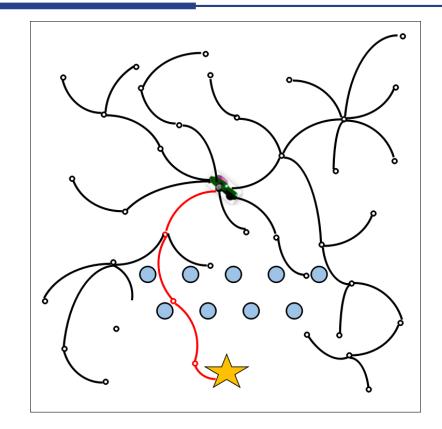
■ P-PRM

■ Our Work

BEAST

Experiments

Conclusion



- General only forward simulator required
- Voronoi bias to encourage coverage
- More recent work (EST, KPIECE) also emphasizes coverage

 $coverage \neq fast planning$

Cost-guided Planning: P-PRM (Le & Plaku 2014)

- Introduction
- Problem
- RRT
- P-PRM
- Our Work

BEAST

Experiments

Conclusion

- To increase speed, be goal directed
- Cost-guided abstract path-based planner: P-PRM use discrete abstraction of state space to guide sampling

RRT

P-PRM

Introduction

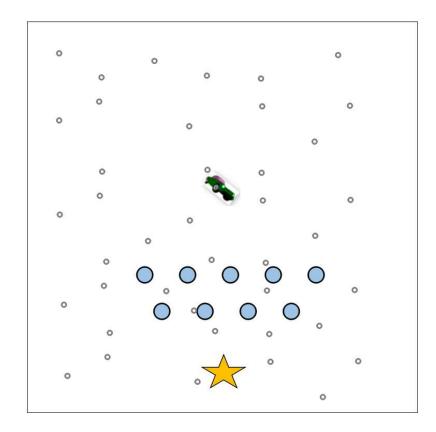
■ Problem
■ RRT
■ P-PRM
■ Our Work

BEAST

Experiments

Conclusion

Abstract the state space:



Randomly sample low dimensional abstract states
(Use as vertices, each vertex represent an abstract region)

Introduction

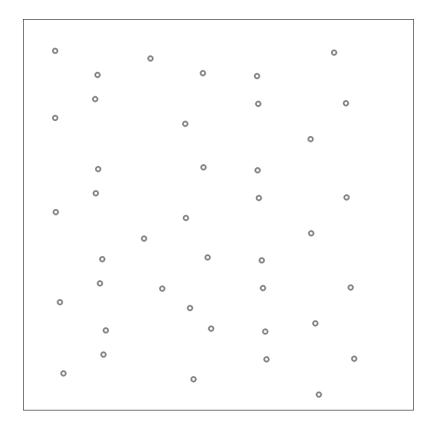
■ Problem
■ RRT
■ P-PRM
■ Our Work

BEAST

Experiments

Conclusion

Abstract the state space:



Randomly sample low dimensional abstract states
(Use as vertices, each vertex represent an abstract region)

Introduction

■ Problem

■ RRT

■ P-PRM

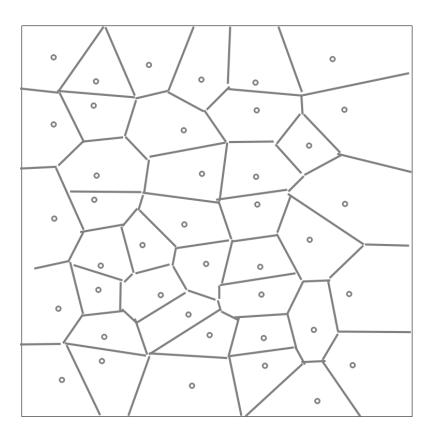
■ Our Work

BEAST

Experiments

Conclusion

Abstract the state space:



Randomly sample low dimensional abstract states
(Use as vertices, each vertex represent an abstract region)

Introduction

■ Problem

■ RRT

■ P-PRM

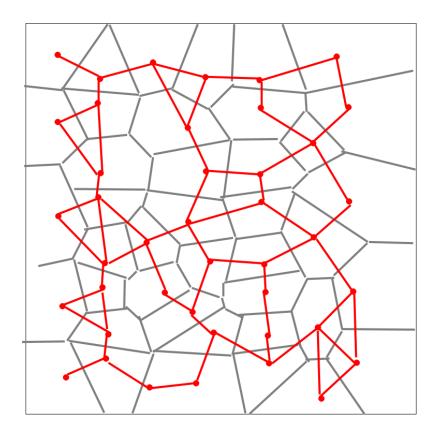
■ Our Work

BEAST

Experiments

Conclusion

Abstract the state space:



- Randomly sample low dimensional abstract vertices (Each Vertex represent an abstract region)
- Connect neighbor vertices

Introduction

■ Problem

RRT

■ P-PRM

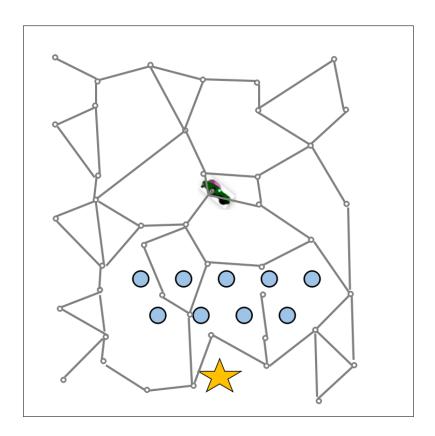
■ Our Work

BEAST

Experiments

Conclusion

Abstract the state space:



- Randomly sample low dimensional abstract vertices (Each Vertex represent an abstract region)
- Connect neighbor vertices
- Resulting abstract graph structure

Introduction

- Problem
- RRT

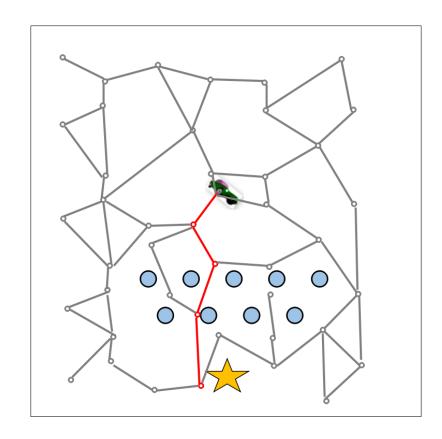
■ P-PRM

■ Our Work

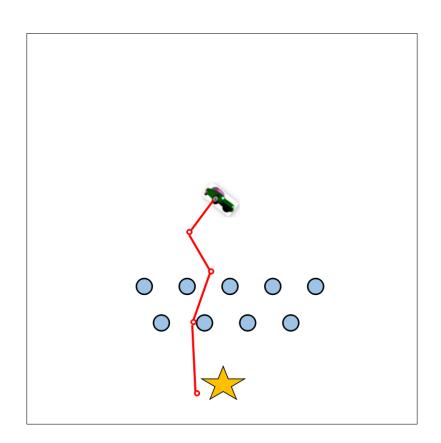
BEAST

Experiments

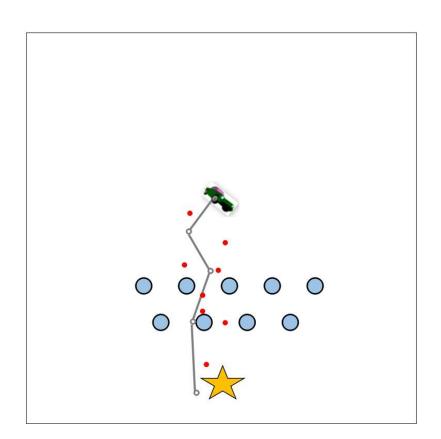
Conclusion



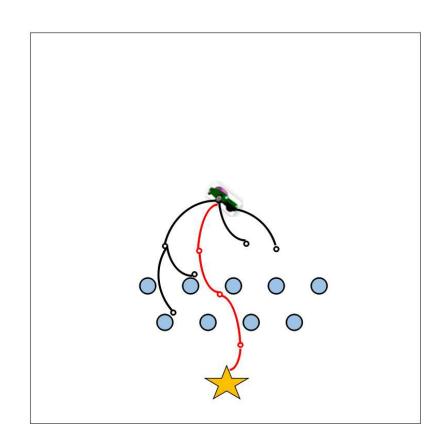
- 1. Find a shortest path from the start vertex to the goal vetex
- 2. Use heuristic cost-to-go information to guide growth of the motion tree.



- 1. Find a shortest path from the start vertex to the goal vetex
- 2. Use heuristic cost-to-go information to guide growth of the motion tree.



- 1. Find a shortest path from the start vertex to the goal vetex
- 2. Use heuristic cost-to-go information to guide growth of the motion tree.



- 1. Find a shortest path from the start vertex to the goal vetex
- 2. Use heuristic cost-to-go information to guide growth of the motion tree.

Introduction

■ Problem

■ RRT

■ P-PRM

■ Our Work

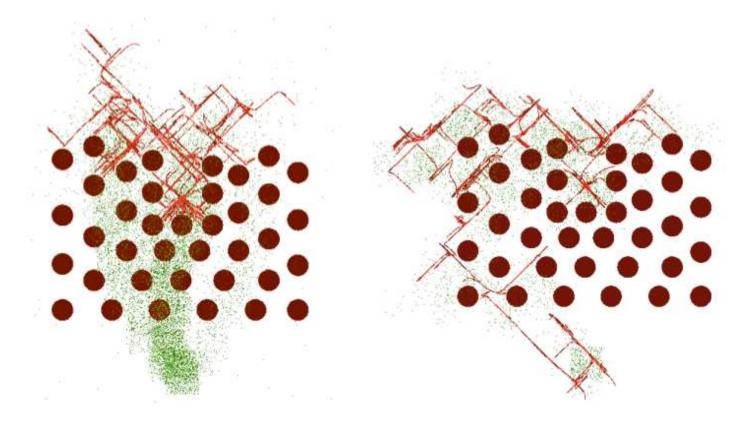
BEAST

Experiments

Conclusion

P-PRM (cost-guided)

BEAST (our work)



optimizing solution $cost \neq optimizing planning effort$

Introduction

BEAST

■ Local Effort

Estimates

■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Bayesian Effort-Aided Search Trees (BEAST)

Local Effort Estimates

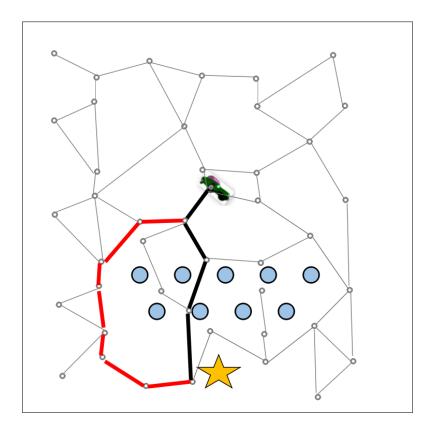
Introduction

BEAST

- Local Effort
- Estimates
- Global Effort
- Estimates
- BEAST
- Experiments
- Conclusion

Minimize planning effort

 \approx Minimize # of total state propagation (steering) attempts



Local Effort Estimates

Introduction

BEAST

- Local Effort Estimates
- Global Effort Estimates
- BEAST

Experiments

Conclusion

How to estimate # of propagation attempts?

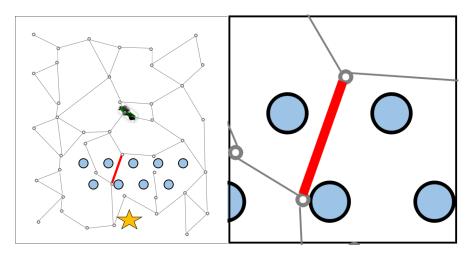
Beta Distribution:

current belief regarding

along an edge

(across abstract regions)

$$E[X] = \frac{success}{success + failure}$$



Edge weight in abstract graph

- = expected # of propagation for one success attempt
- $=E[X]^{-1}$

Local Effort Estimates

Introduction

BEAST

■ Local Effort Estimates

- Global Effort Estimates
- BEAST

Experiments

Conclusion

How to estimate # of propagation attempts?

Beta Distribution:

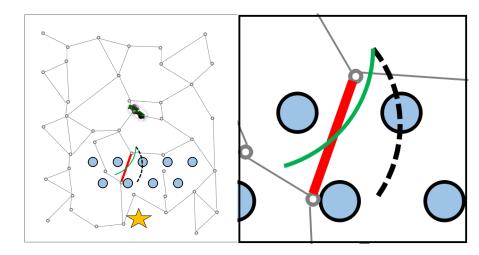
current belief regarding

$$E[X] = \frac{success}{success + failure}$$

success rate

along an edge

(across abstract regions)



Edge weight in abstract graph

- = expected # of propagation for one success attempt
- $=E[X]^{-1}$

Global Effort Estimates

Introduction

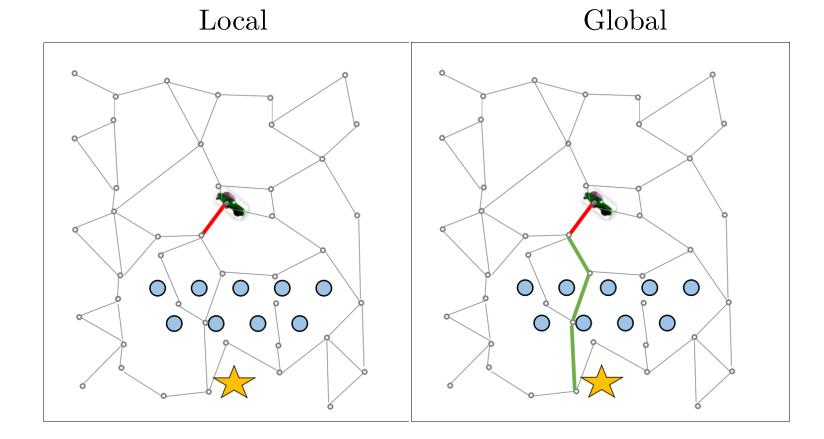
BEAST

- Local Effort Estimates
- Global Effort Estimates
- BEAST

Experiments

Conclusion

- Given local effort estimates, we want estimate total effort to reach the goal.
- Accumulate local effort estimate along the shortest paths from each state to the goal.



Introduction

BEAST

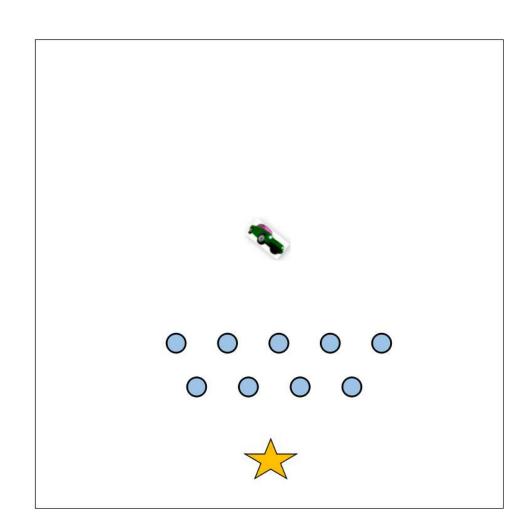
Local Effort
Estimates

Global Effort
Estimates

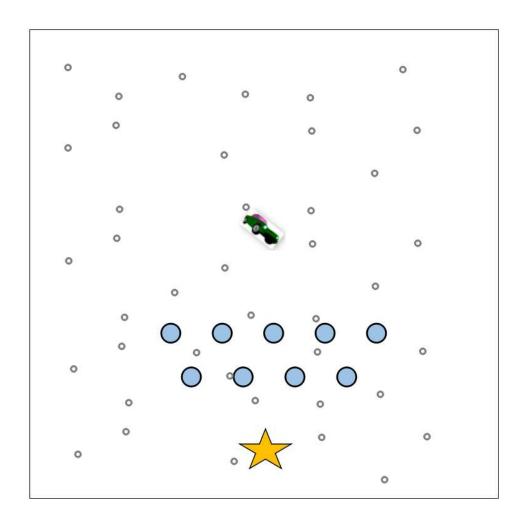
BEAST

Experiments

Conclusion



Generate abstract graph



Generate abstract graph

Introduction

BEAST

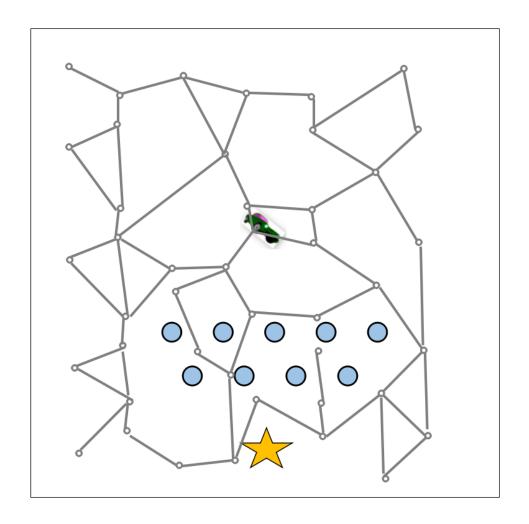
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Initialize effort estimate

Introduction

BEAST

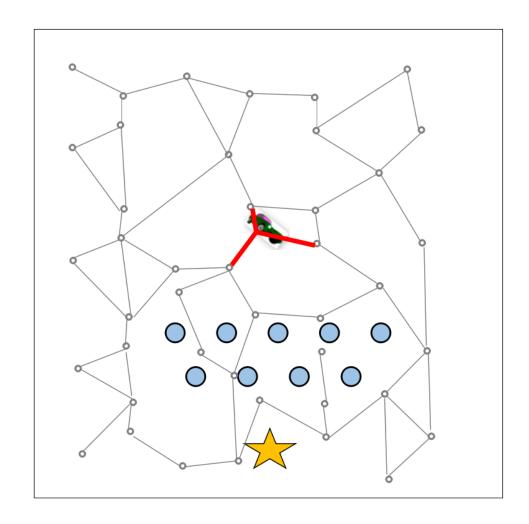
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

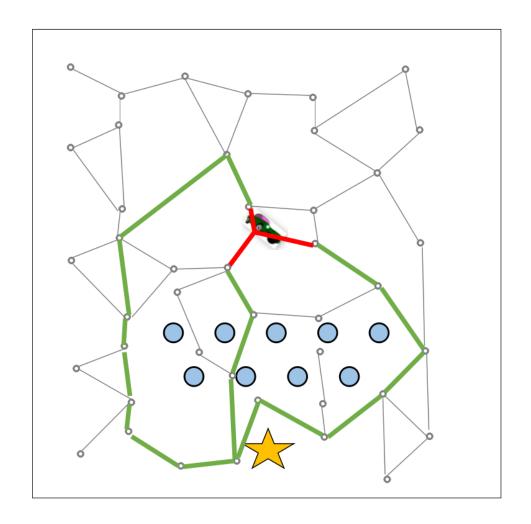
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

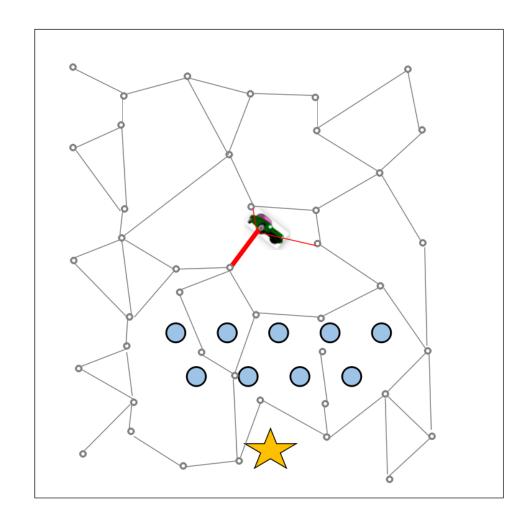
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

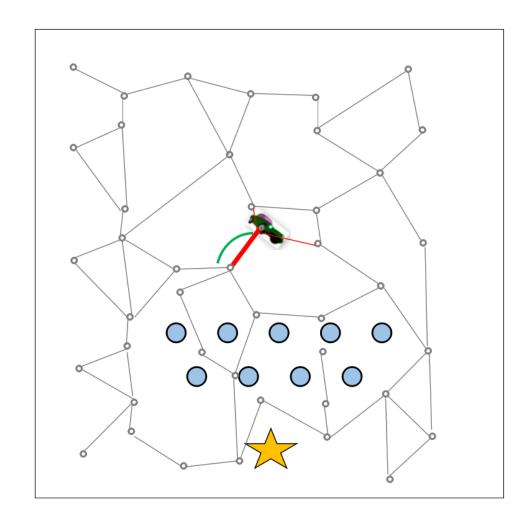
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

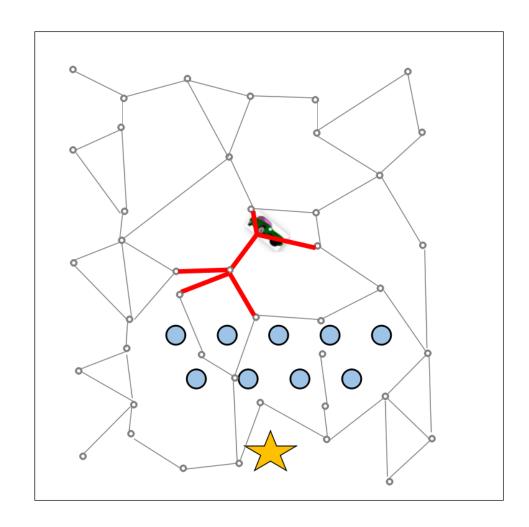
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

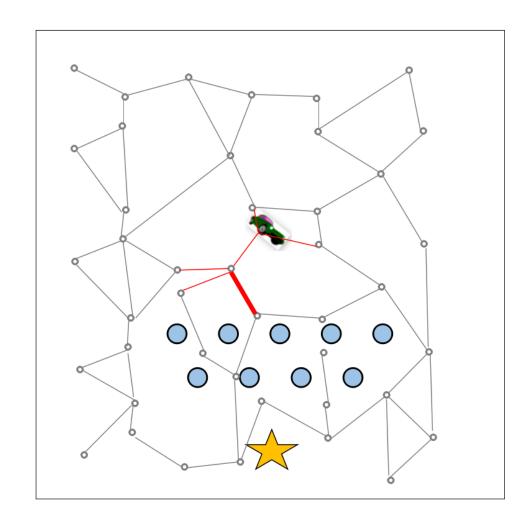
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

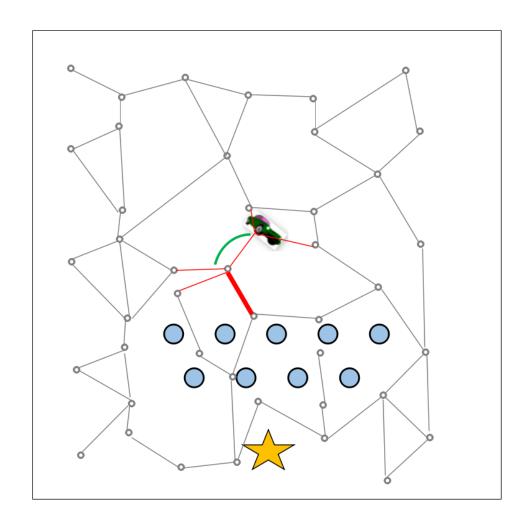
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

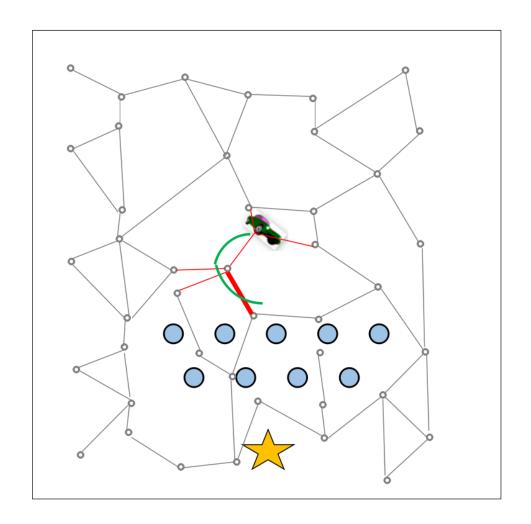
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

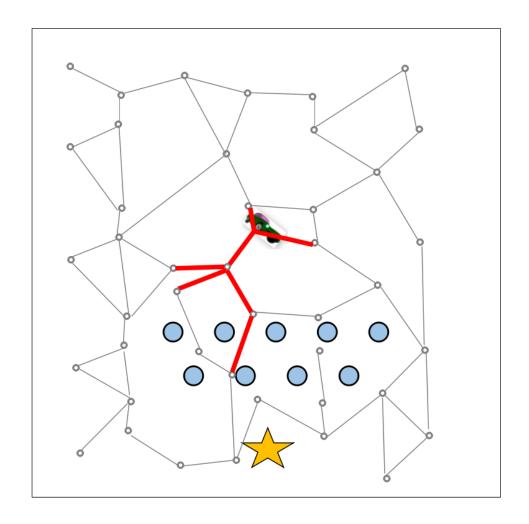
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

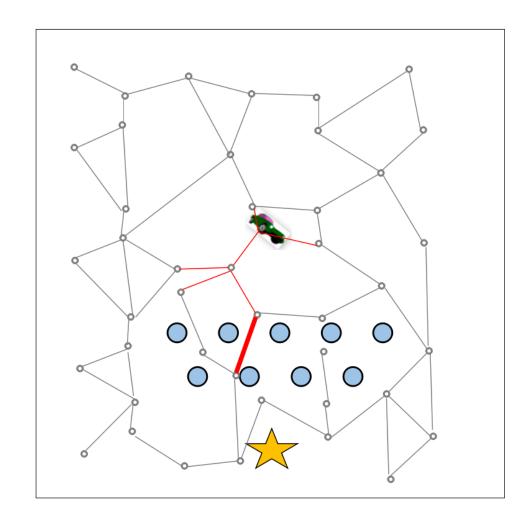
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

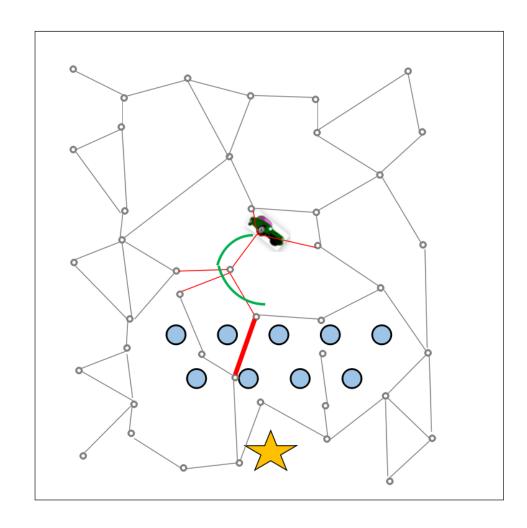
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

■ Local Effort

Estimates

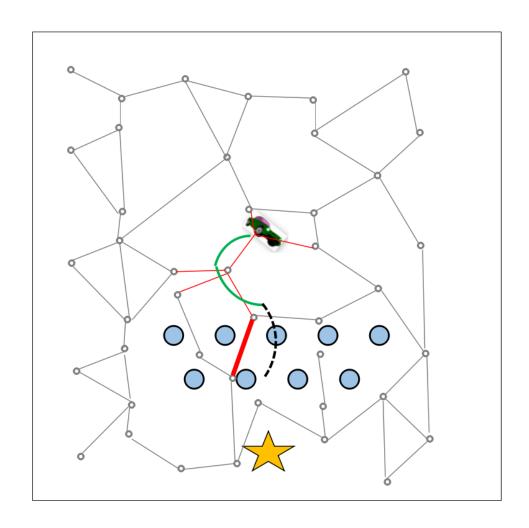
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

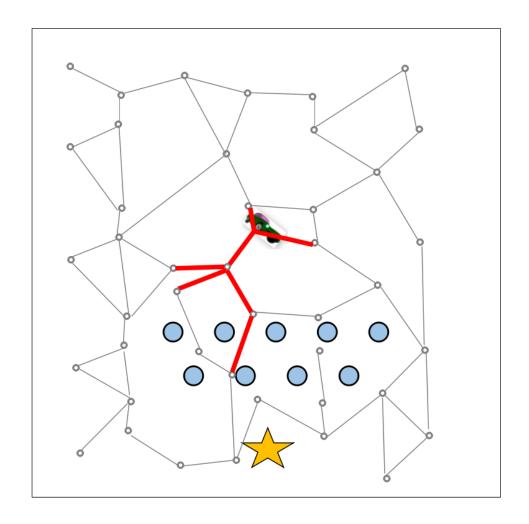
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

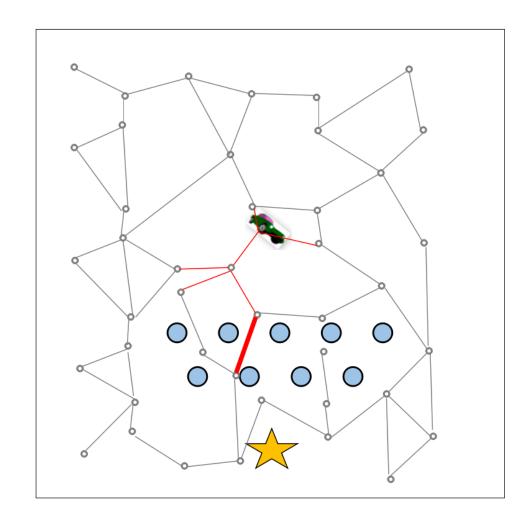
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

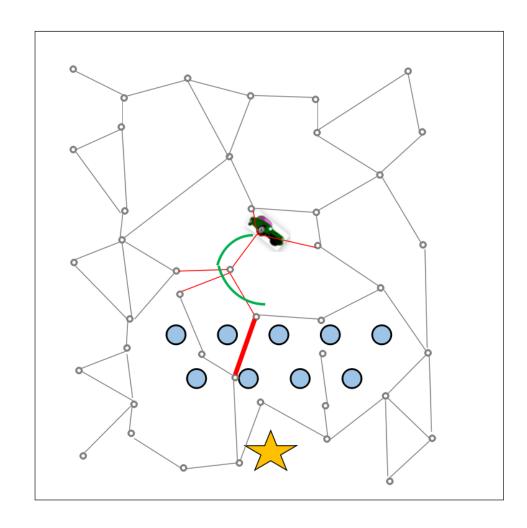
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

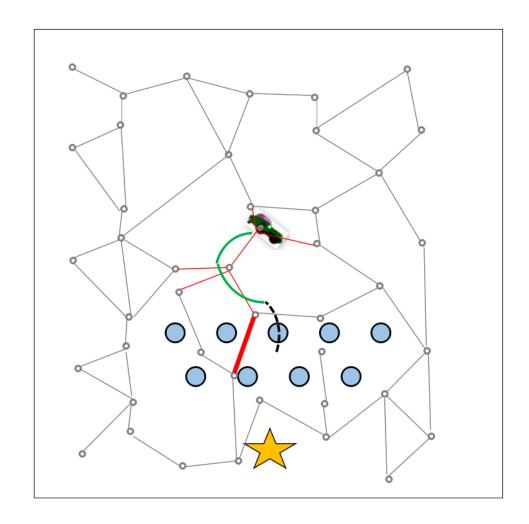
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

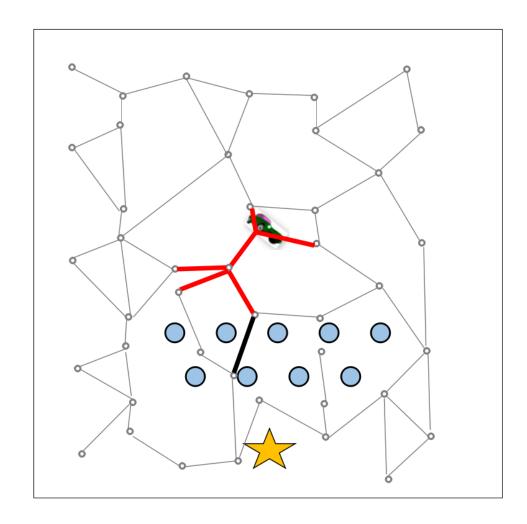
Local Effort
Estimates

Global Effort
Estimates

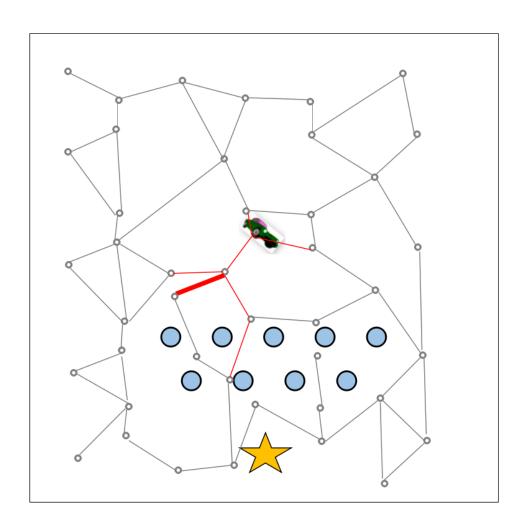
BEAST

Experiments

Conclusion



Introduction BEAST ■ Local Effort Estimates ■ Global Effort Estimates ■ BEAST Experiments Conclusion



Introduction

BEAST

■ Local Effort

Estimates

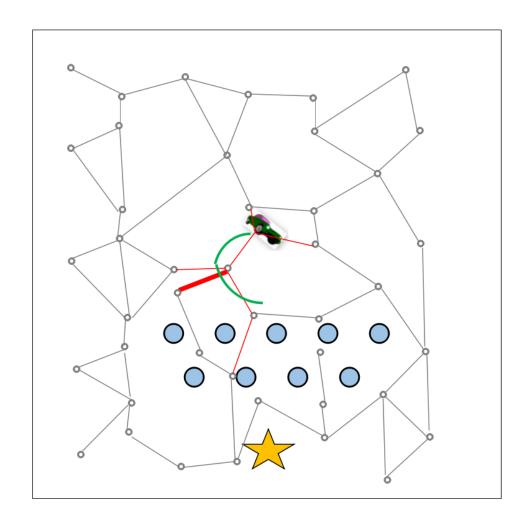
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

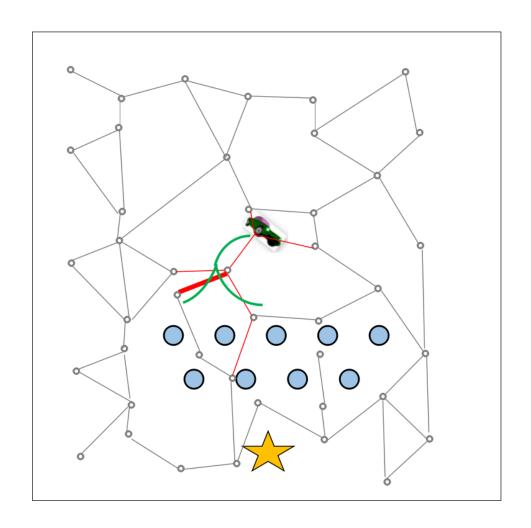
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

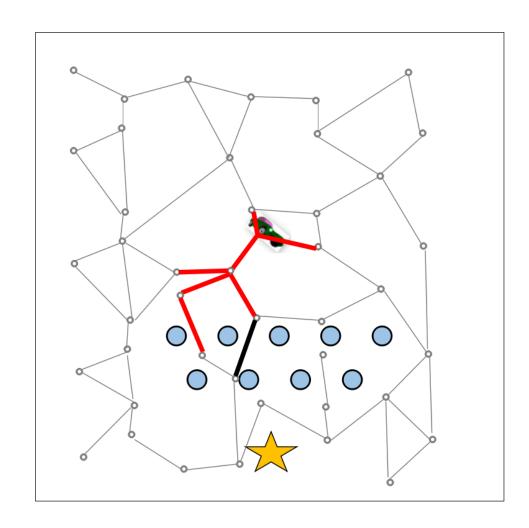
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

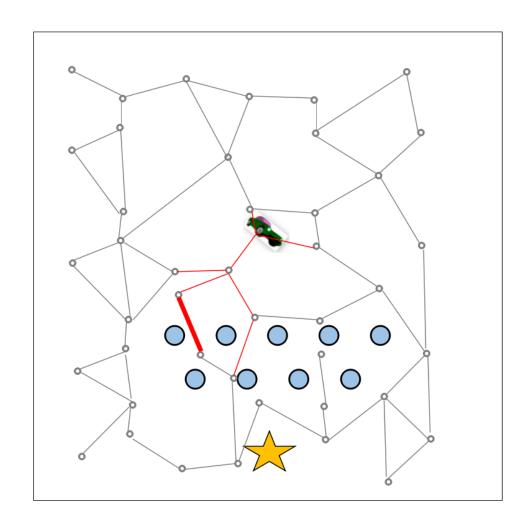
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

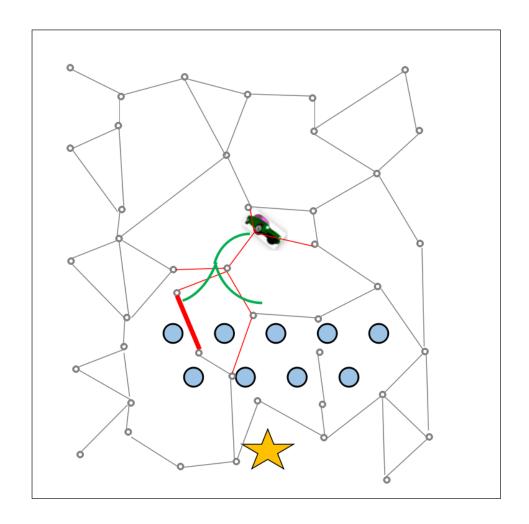
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

■ Local Effort

Estimates

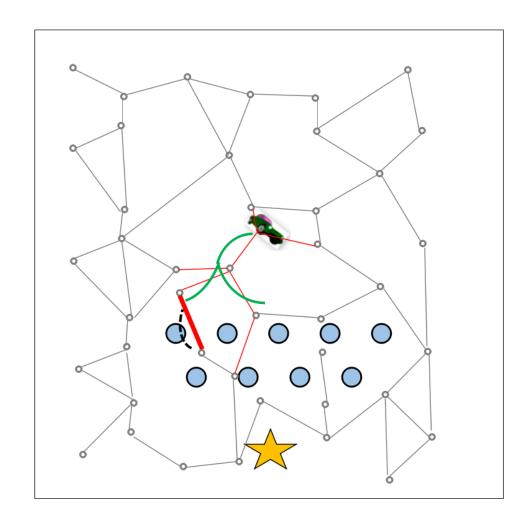
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

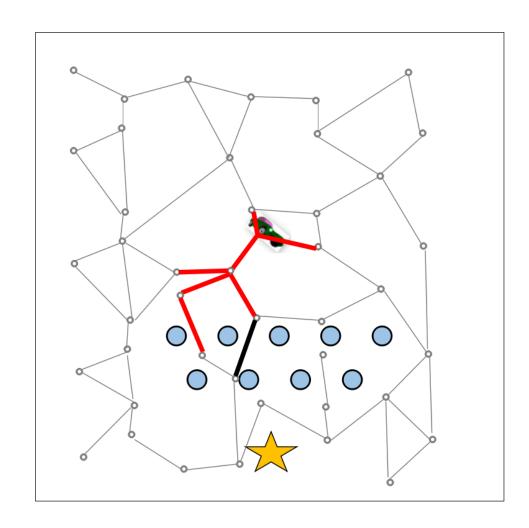
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

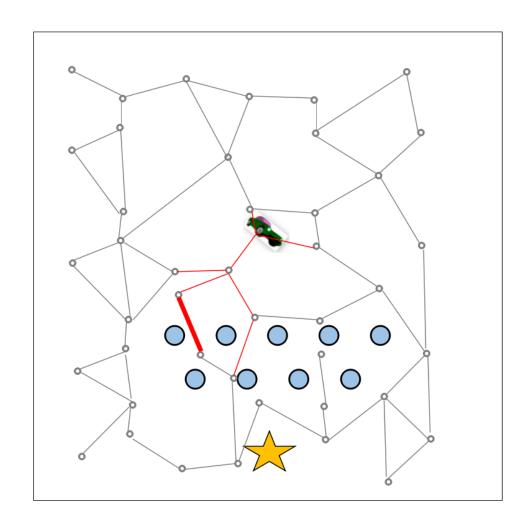
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

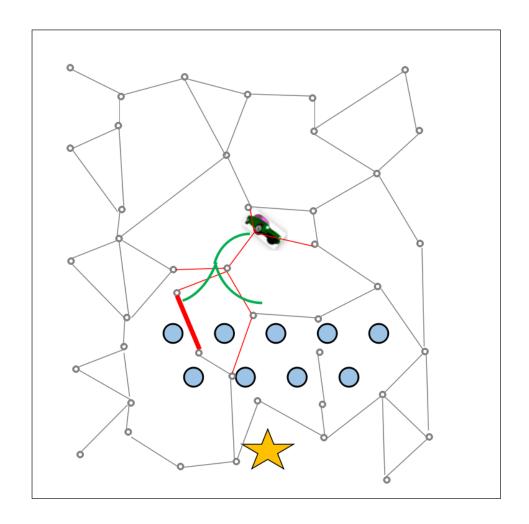
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

■ Local Effort

Estimates

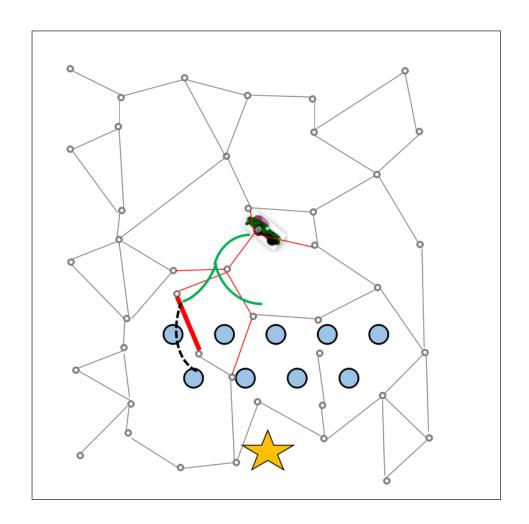
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

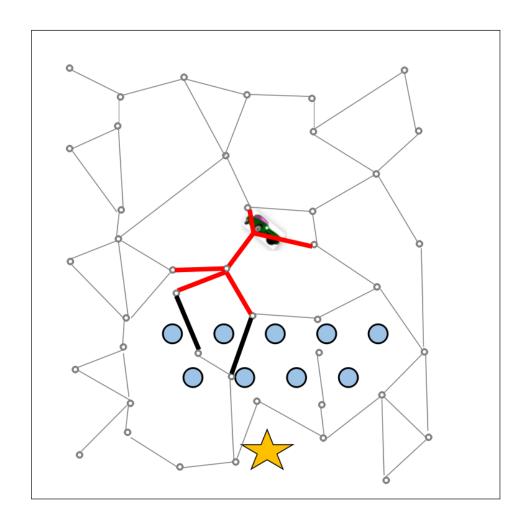
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

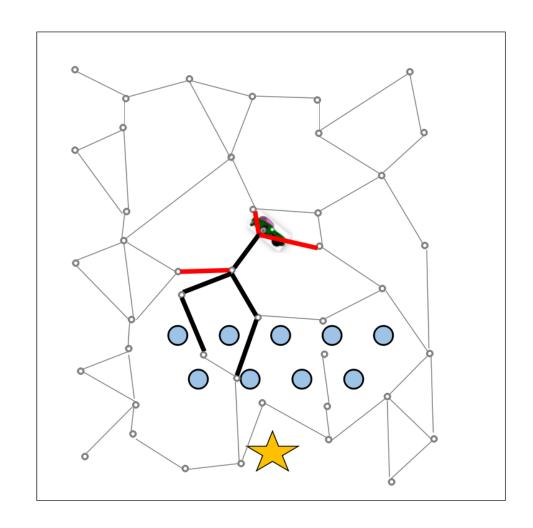
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

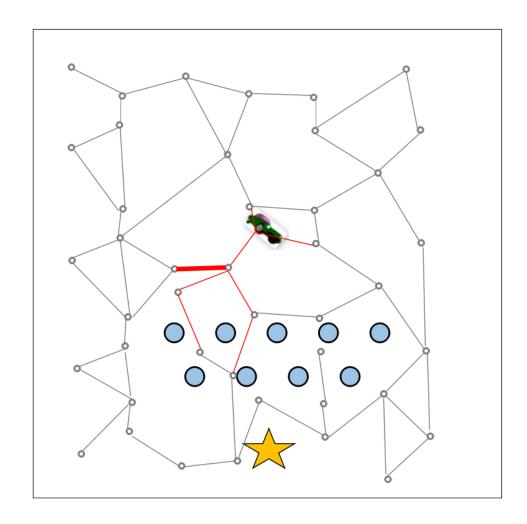
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

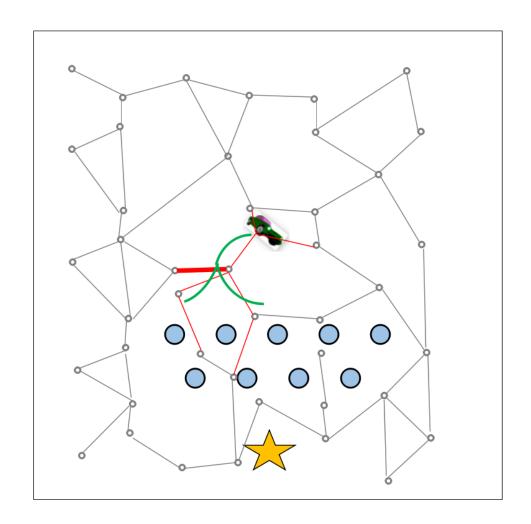
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

■ Local Effort

Estimates

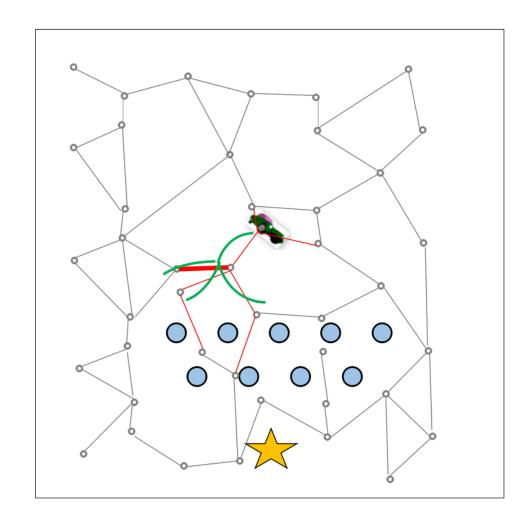
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

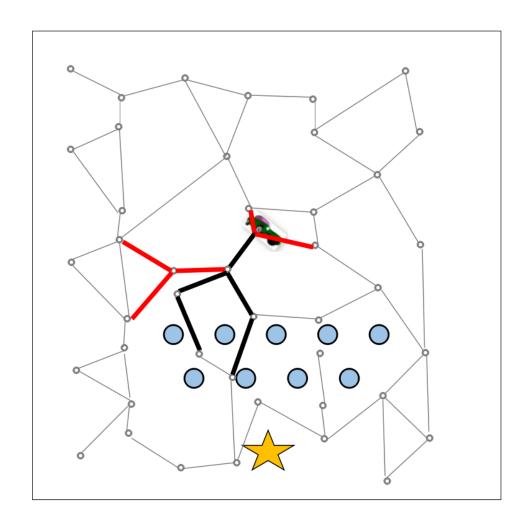
■ Local Effort
Estimates

■ Global Effort
Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

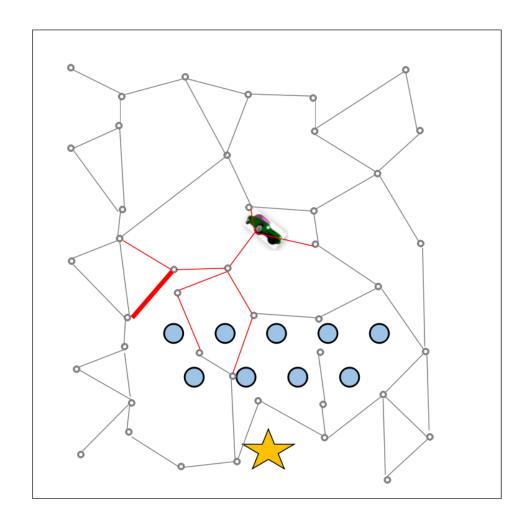
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

■ Local Effort

Estimates

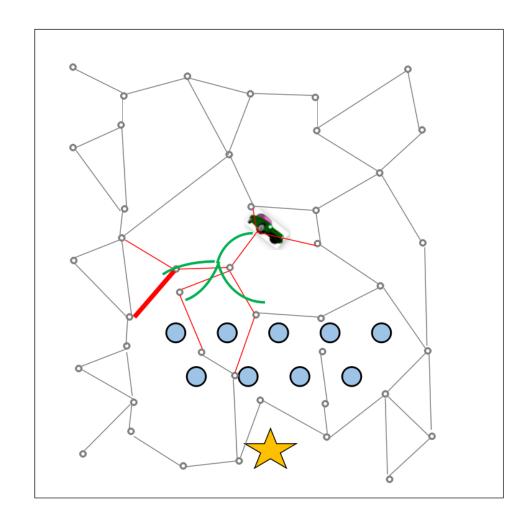
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

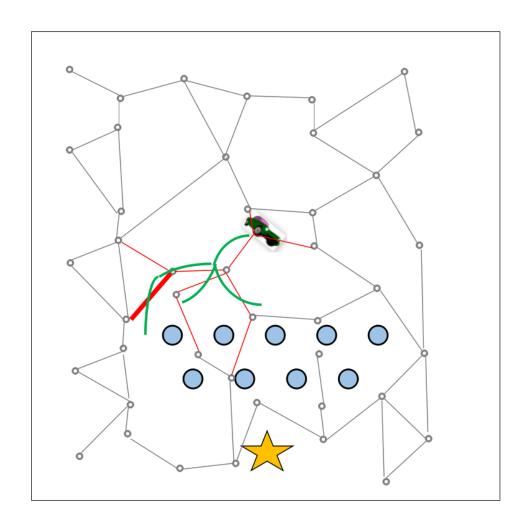
Local Effort
Estimates

Global Effort
Estimates

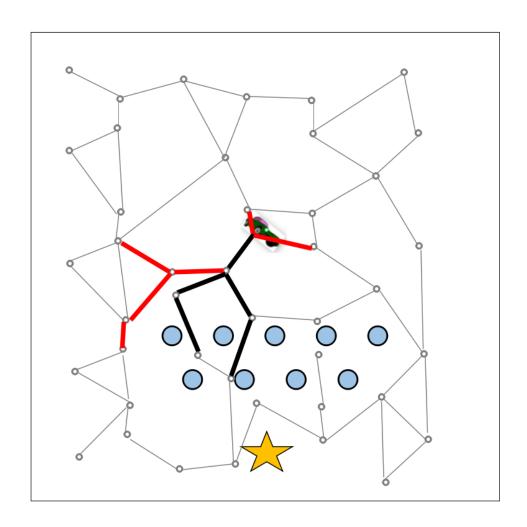
BEAST

Experiments

Conclusion



Introduction BEAST Local Effort Estimates Global Effort Estimates BEAST Experiments Conclusion



Introduction

BEAST

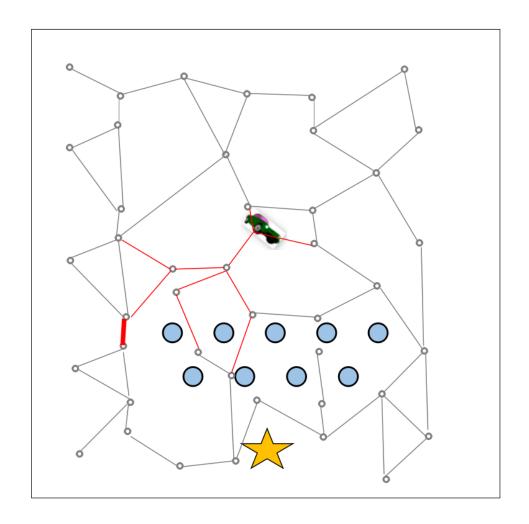
Local Effort
Estimates

Global Effort
Estimates

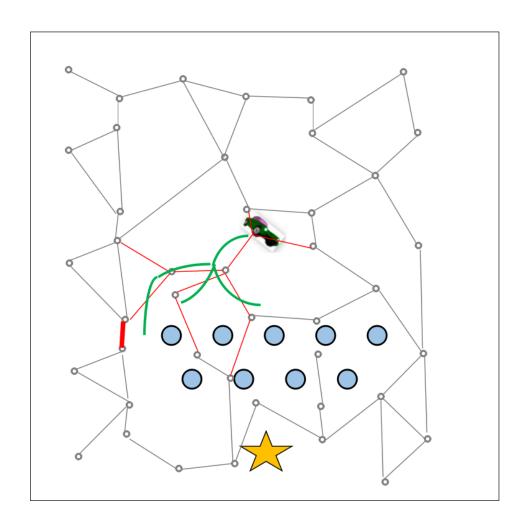
BEAST

Experiments

Conclusion



Introduction BEAST ■ Local Effort Estimates ■ Global Effort Estimates ■ BEAST Experiments Conclusion



Introduction

BEAST

■ Local Effort

Estimates

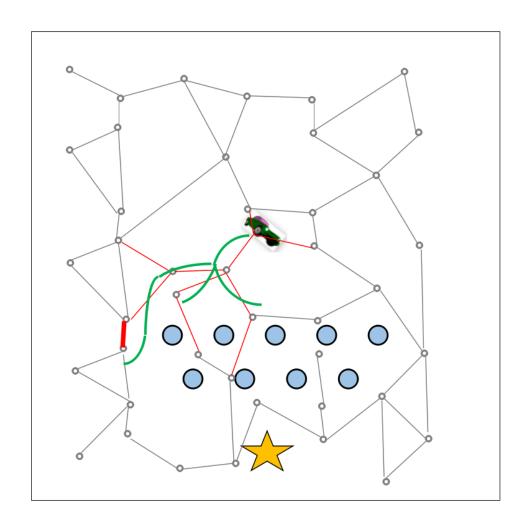
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion



Introduction

BEAST

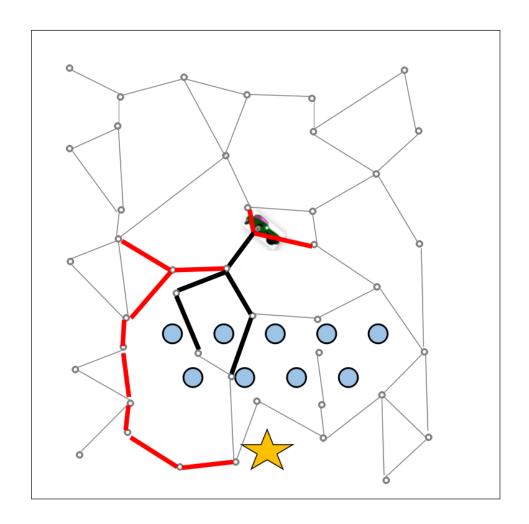
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

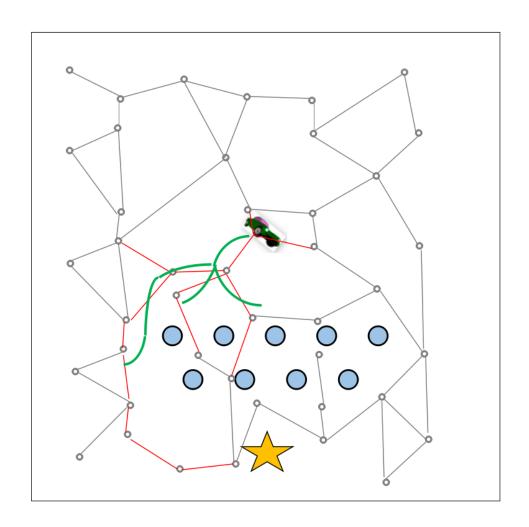
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Introduction

BEAST

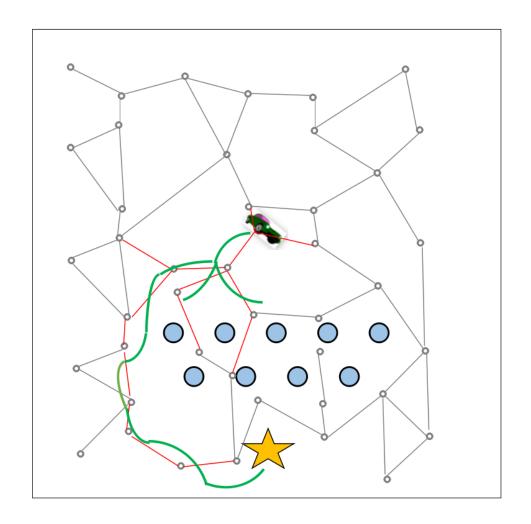
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Effort-guided Planning: BEAST

Introduction

BEAST

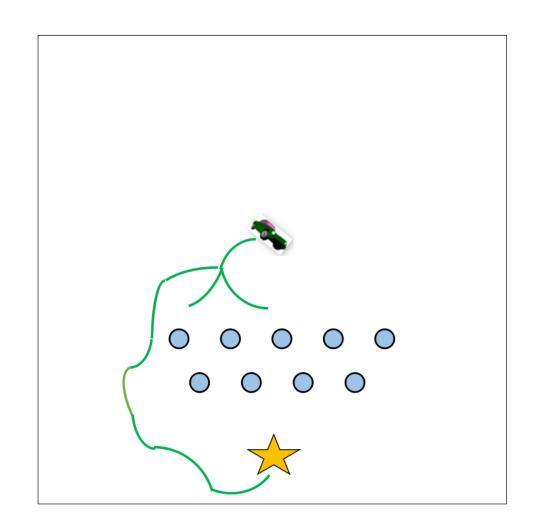
Local Effort
Estimates

Global Effort
Estimates

BEAST

Experiments

Conclusion



Estimate effort \rightarrow Guide motion tree growth toward easy way

Effort-guided Planning: BEAST

Introduction

BEAST

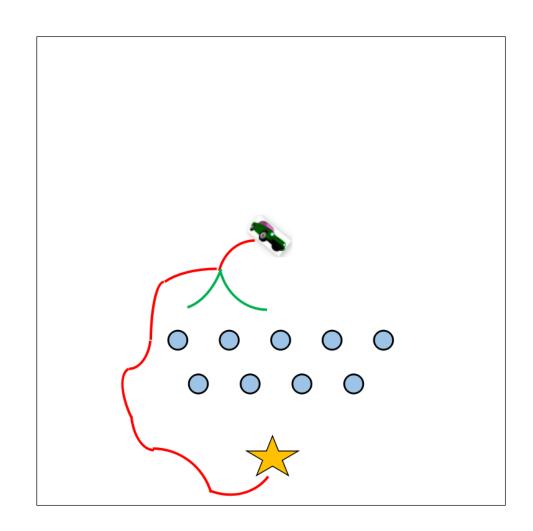
Local Effort
Estimates

Global Effort
Estimates

BEAST

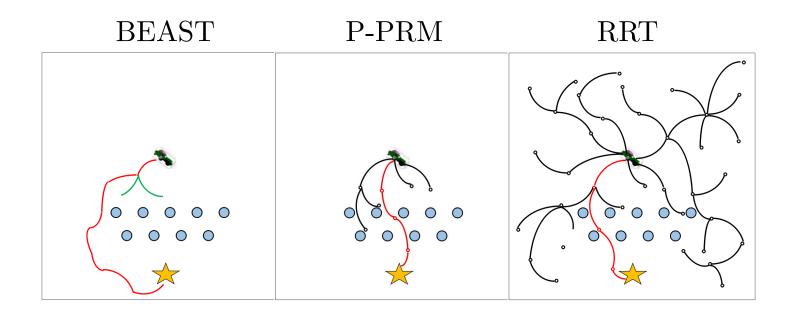
Experiments

Conclusion



Estimate effort \rightarrow Guide motion tree growth toward easy way

Effort-guided Planning: BEAST



Beast find solution faster than P-PRM and RRT

Introduction

BEAST

Experiments

- **■** Environments
- Results

Conclusion

Experiments

Environments and Set up

Introduction

BEAST

Experiments

- **■** Environments
- Results
- Conclusion

- Open Motion Planning Library (OMPL)
 ompl.kavrakilab.org
 RRT, KPIECE
 Dynamic Car, Blimp, Quadrotor
- We implementedP-PRMHovercraft
- 5 start-goal pairs
- 50 random seeds

(a) car and hovercraft

(b) open area

(c) 3 ladder

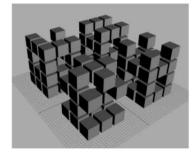
(d) single wall

(e) 2D forest

(f) blimp

(g) quadrotor

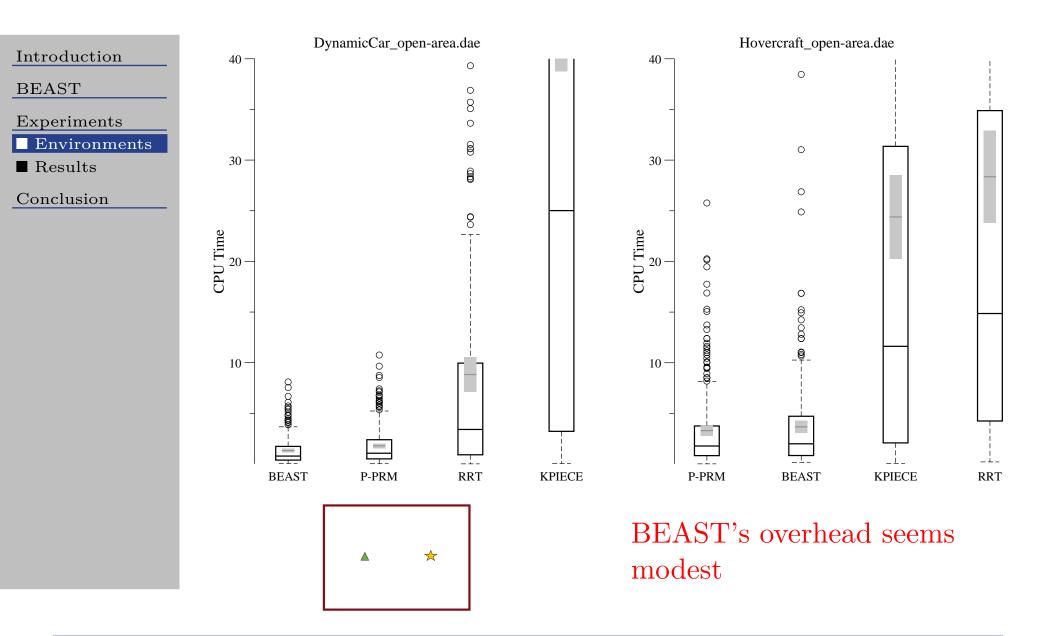
(h) 3D forest



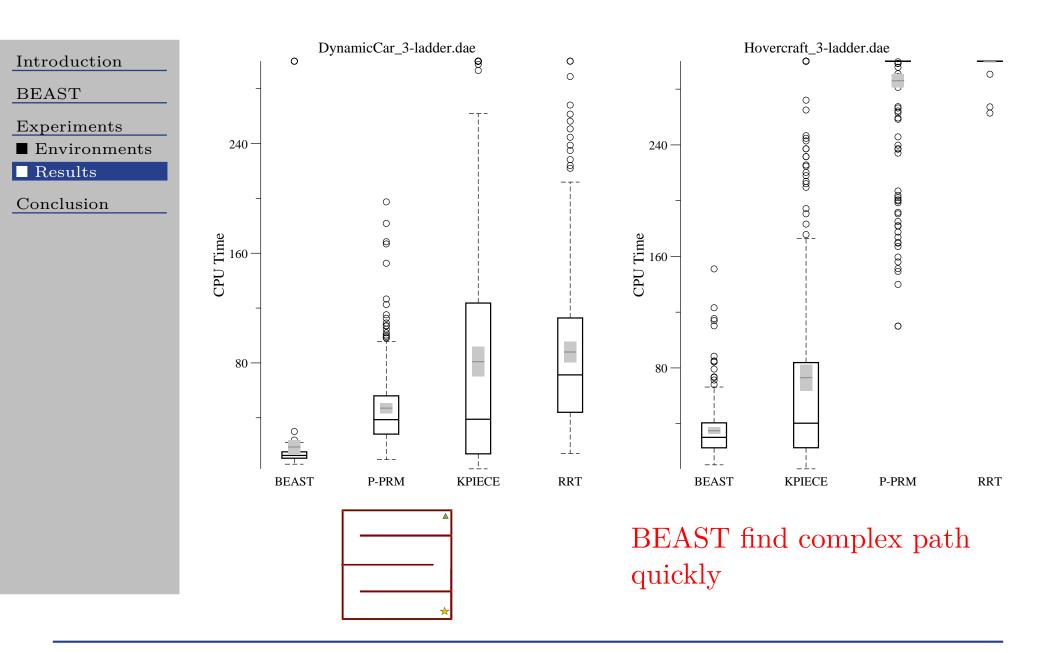
(i) fifthelement

Tianyi Gu (UNI

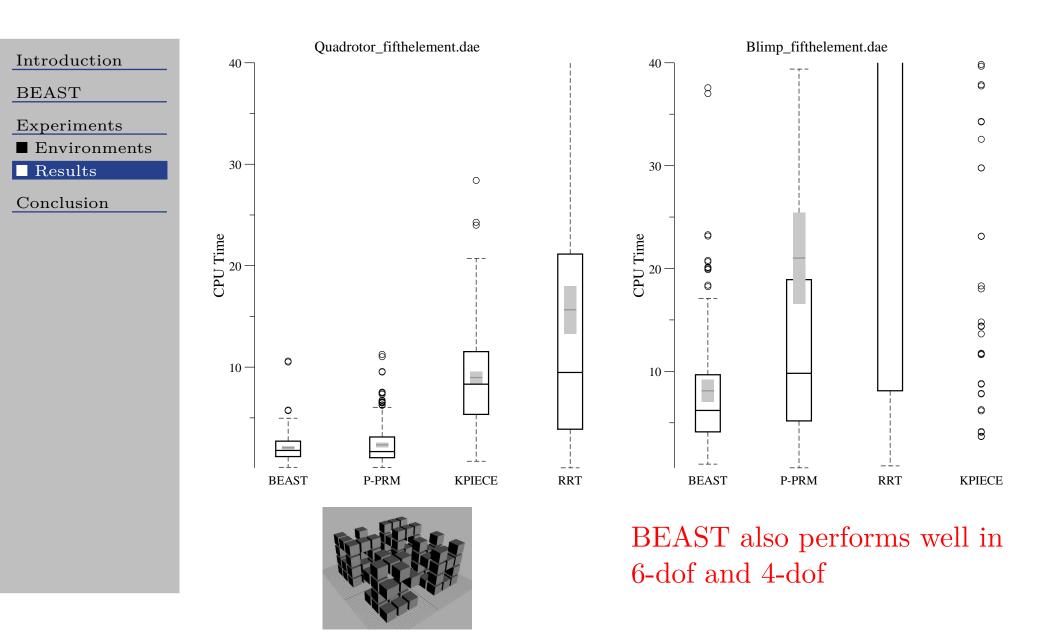
Results: Open Area with Dynamic car & Hovercraft



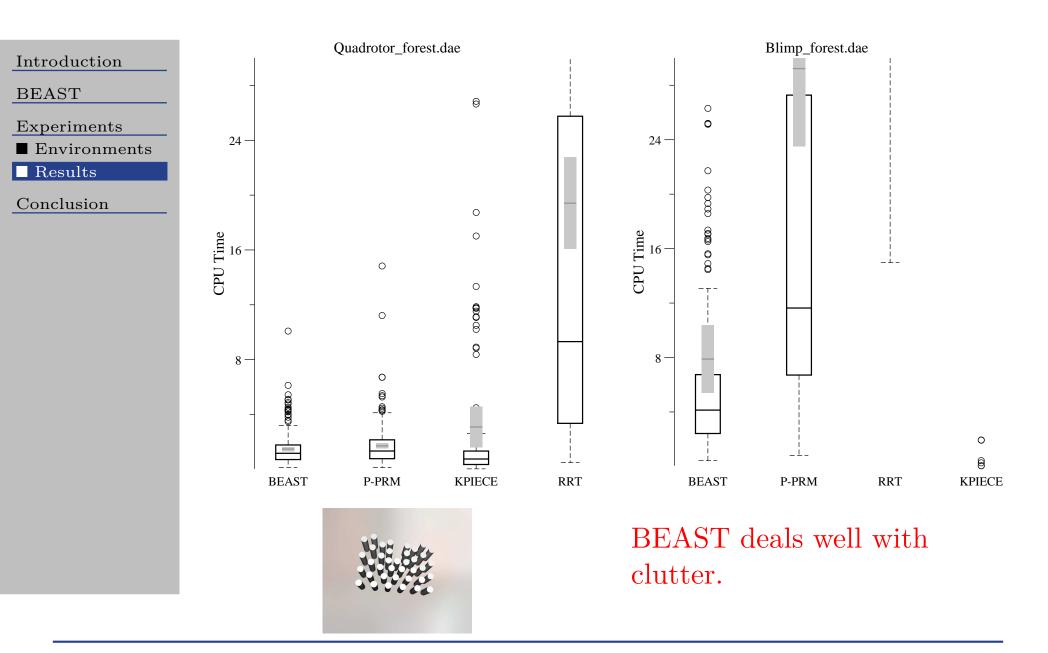
Results: 3-ladder with Dynamic car & Hovercraft



Results: Fifth-element with Quadrotor & Blimp



Results: 3D Forest with Quadrotor & Blimp



Results

Introduction

BEAST

Experiments

■ Environments

■ Results

Conclusion

Does fast planning yield high-cost plans?

Goal achievement time = planning time + trajectory time

(As factor of BEAST, 95% confidence intervals for the median)

map	vehicle	P-PRM	KPIECE	RRT
open area	car	1.0-1.1	1.8-2.3	1.0-1.2
	hover.	1.0–1.1	1.6–1.9	1.4 - 1.8
single wall	car	1.0-1.1	1.2-1.4	1.0-1.1
	hover.	∞ – ∞	1.1 - 1.3	∞ – ∞
3 ladder	car	1.0-1.1	1.2-1.3	1.1–1.2
	hover.	∞ – ∞	1.0 - 1.1	∞ – ∞
2D forest	car	0.9–1.1	∞ – ∞	1.4–1.8
	hover.	0.8–0.9	$2.8-\infty$	∞ – ∞
3D forest	quad.	0.9–1.0	1.0-1.2	1.1–1.4
	blimp	1.0–1.1	∞ – ∞	1.9 - 2.4
fifthelement	quad.	0.8-1.0	0.9-1.0	1.3-1.6
	blimp	0.9–0.9	∞ – ∞	1.0-1.3

GAT of BEAST is similar to P-PRM and better than KPIECE and RRT

Introduction

BEAST

Experiments

Conclusion

■ Summary

Conclusion

Summary

Introduction

BEAST

Experiments

Conclusion

■ Summary

- 1. Explicit reasoning about planning effort
- 2. Find solutions faster than cost-guided planning
- 3. Continue the transfer of ideas from heuristic graph search to sampling-based motion planning:
 - Abstraction-based heuristics
 - Explicit estimates of effort
 - Online learning for metareasoning

Questions?

Introduction

BEAST

Experiments

Conclusion

Questions

■ Questions?

Introduction

BEAST

Experiments

Conclusion

Back-up Slides

■ Limitation

■ Internal

Sampling

Back-up Slides

Limitation

Introduction

BEAST

Experiments

Conclusion

Back-up Slides

- Limitation
- Internal Sampling

- If abstract misses important aspects of the problem, BEAST may not provide much speed-up
- If the problem is very simple, the overhead of forming and maintaining the abstraction may not be worth the possible decrease in state propagation and collision checking
- Ignore solution cost

Internal Sampling

Introduction

BEAST

Experiments

Conclusion

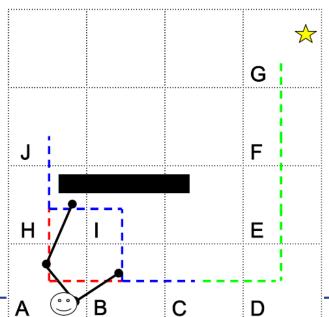
Back-up Slides

■ Limitation

■ Internal Sampling

Benefit of internal sampling? Add more samples to the destination region so that increase the chance it can further propagate outward.

$$te(e) = ee(e) + \min_{e_2 \in e.out} \frac{e_2 \cdot \alpha + e_2 \cdot \beta + 1/n}{e_2 \cdot \alpha + 1/n} + te(e_2 \cdot dest)$$



An Effort Bias for Sampling-based Motion Planning – 32 / 33