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■ Geometric Motion Planning:

piano mover’s problem

find sequence of states

■ Kinodynamic Motion Planning:

racing cars

find sequence of piece-wise constant controls
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■ Lattice-based approach:

◆ Dijkstra (1959)
◆ A* (1968)

■ Sampling-based approach:

◆ RRT (1999)
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■ Given: environment, start state, goal region,
vehicle dynamics

■ Find: dynamically-feasible continuous trajectory
(sequence of piece-wise constant controls)
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■ Generate a (random) sample state
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■ Generate a (random) sample state
■ Select nearest state in the existing motion tree
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■ Generate a (random) sample state
■ Select nearest state in the existing motion tree
■ Steer toward the sample, generating new state

(or use several random controls if no steering)
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■ Generate a (random) sample state
■ Select nearest state in the existing motion tree
■ Steer toward the sample, generating new state

(or use best of several random controls if no steering)
■ Repeatedly grow the motion tree until it touchs the goal

region
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■ Generate a (random) sample state
■ Select nearest state in the existing motion tree
■ Steer toward the sample, generating new state

(or use a random control if no steering)
■ Repeatedly grow the motion tree until it touchs the goal

region
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■ General – only forward simulator required
■ Voronoi bias to encourage coverage
■ More recent work (EST, KPIECE) also emphasizes

coverage
coverage 6= fast planning
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■ To increase speed, be goal directed
■ Cost-guided abstract path-based planner: P-PRM

use discrete abstraction of state space to guide sampling

RRT P-PRM
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Abstract the state space:

■ Randomly sample low dimensional abstract states
(Use as vertices, each Vertex represent an abstract region)
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Abstract the state space:

■ Randomly sample low dimensional abstract vertices
(Each Vertex represent an abstract region)

■ Connect neighbor vertices
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Abstract the state space:

■ Randomly sample low dimensional abstract vertices
(Each Vertex represent an abstract region)

■ Connect neighbor vertices
■ Resulting abstract graph structure
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1. Find a shortest path from the start vertex to the goal
vetex

2. Use heuristic cost-to-go information to guide growth of
the motion tree.
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P-PRM (cost-guided) BEAST (our work)

optimizing solution cost 6= optimizing planning effort
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1. Explicit reasoning about planning effort
2. Find decent solutions faster than cost-guided methods
3. Combines:

■ Sampling-based motion planning
■ Heuristic graph Search
■ Online estimation of effort

Transfer new ideas from Heuristic Search
to Sampling-based Motion Planning
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Minimize planning effort
≈ Minimize # of total propagation attempts
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How to estimate # of propagation attempts?

Beta Distribution: current belief regarding success rate
across an edge

E[X] =
success

success + failure

Edge weight in abstract graph
= expected # of propagation for one success attempt
= E[X]−1
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■ Given local effort estimates, we want estimate total effort
to reach the goal.

■ Accumulate local effort estimate along the shortest paths
from each state to the goal.

Local Global
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Generate abstract graph
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Initialize effort estimate
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Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Estimate effort → Guide motion tree growth toward easy way



Effort-guided Planning: BEAST

Introduction

BEAST
■ Local Effort

Estimates
■ Global Effort

Estimates

■ BEAST

Experiments

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 24 / 37

Beast find solution faster than P-PRM and RRT



Experiments

Introduction

BEAST

Experiments

■ Environments

■ Results

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 25 / 37



Environments and Set up

Introduction

BEAST

Experiments

■ Environments

■ Results

Conclusion

Tianyi Gu (UNH) An Effort Bias for Sampling-based Motion Planning – 26 / 37

■ Open Motion Planning Library (OMPL)
ompl.kavrakilab.org

RRT, KPIECE
Dynamic Car, Blimp, Quadrotor

■ We implemented
P-PRM
Hovercraft

■ 5 start-goal pairs
■ 50 random seeds
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BEAST’s overhead seems
modest
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BEAST find complex path
quickly
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BEAST also performs well in
6-dof and 7-dof
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BEAST deals well with
clutter.
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Does fast planning yield high-cost plans?
Goal achievement time = planning time + trajectory time
(As factor of BEAST)

GAT of BEAST is similar to P-PRM and better than
KPIECE and RRT
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1. Explicit reasoning about planning effort
2. Find solutions faster than cost-guided planning
3. Continue the transfer of ideas from heuristic graph search

to sampling-based motion planning:

■ Abstraction-based heuristics
■ Explicit estimates of effort
■ Online learning for metareasoning
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■ If abstract misses important aspects of the problem,
BEAST may not provide much speed-up

■ If the problem is very simple, the overhead of forming and
maintaining the abstraction may not be worth the possible
decrease in state propagation and collision checking

■ Ignore solution cost
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Benefit of internal sampling? Add more samples to the
destination region so that increase the chance it can further
propagate outward.

te(e) = ee(e) + min
e2∈e.out

e2.α + e2.β + 1/n

e2.α + 1/n
+ te(e2.dest)
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