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Growing a Motion Tree: RRT
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B Given: environment, start state, goal region,
vehicle dynamics
B Find: dynamically-feasible continuous trajectory
(sequence of piece-wise constant controls)
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Growing a Motion Tree: RRT

Introduction
B Problem

B RRT

H P-PRM
B Our Work

BEAST

Experiments

Conclusion

B General — only forward simulator required
Voronoi bias to encourage coverage

B More recent work (EST, KPIECE) also emphasizes
coverage

coverage #* fast planning
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Cost-guided Planning: P-PRM (Le & Plaku 2014
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Cost-guided Planning: P-PRM

B P-PRM

1. Find a shortest path from the start vertex to the goal
vetex

2. Use heuristic cost-to-go information to guide growth of
the motion tree.
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Cost-guided Planning: P-PRM

It roduction P-PRM (cost-guided) BEAST (our work)

B Problem
B RRT

B P-PRM

B Our Work

BEAST

Experiments

Conclusion

optimizing solution cost # optimizing planning effort
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Our Work: Effort-based Guidance

1. Explicit reasoning about planning effort

Introduction

e 2. Find decent solutions faster than cost-guided methods
B P-PRM 3. Combines:

BEAST B Sampling-based motion planning

Experiments B Heuristic graph Search

Conclusion B Online estimation of effort

Transfer new ideas from Heuristic Search
to Sampling-based Motion Planning
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Bayesian Effort-Aided Search Trees
(BEAST)
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Local Effort Estimates

Minimize planning effort

Introduction

BEAST ~ Minimize # of total propagation attempts
B Local Effort

Estimates
B Global Effort
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How to estimate # of propagation attempts?

Beta Distribution: current belief regarding success rate
across an edge
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Global Effort Estimates

Imtroduction B Given local effort estimates, we want estimate total effort

BEAST to reach the goal.
T B Accumulate local effort estimate along the shortest paths

Estimates

B Global Effort
from each state to the goal.

Local Global

B BEAST

Experiments

Conclusion
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Effort-guided Planning: BEAST

B BEAST

Generate abstract graph
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Effort-guided Planning: BEAST

B BEAST
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Effort-guided Planning: BEAST
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Beast find solution faster than P-PRM and RRT

B BEAST
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Experiments

Experiments
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Environments and Set up

B Open Motion Planning Library (OMPL)

Introduction
BEAST ompl.kavrakilab.org
Experiments RRT, KPIECE
Dynamic Car, Blimp, Quadrotor
Conclusion B We implemented
P-PRM
Hovercraft

5 start-goal pairs
B 50 random seeds
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. e 0000,
A ® 0000
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*
e

(a) car and hovercraft (b) open area  (c) 3 ladder  (d) single wall (e) 2D forest
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(f) blimp (g) quadrotor (h) 3D forest (i) fifthelement



Results

DynamicCar_open-area.dae Hovercraft_open-area.dae
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BEAST’s overhead seems
modest
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Results
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BEAST find complex path
quickly
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Results
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BEAST also performs well in
6-dof and 7-dof
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Results
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BEAST deals well with
clutter.
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Results

Introduction

BEAST

Experiments

B Environments

Conclusion

Does fast planning yield high-cost plans?
Goal achievement time = planning time + trajectory time

(As factor of BEAST)

map vehicle | P-PRM KPIECE RRT
car 1.0-1.1 1.8-2.3 1.0-1.2
openarea pover. | 1.0-1.1 1.6-19  14-1.8
ol g A 1.0-1.1 1.2-14 1.0-1.1
Sigle wa hover. 00—00 1.1-1.3 00—00
car 1.0-1.1 1.2-1.3 1.1-1.2
3 ladder hover. 00—00 1.0-1.1 00—0C
car 0.9-1.1 oo0o—¢ 1.4-1.8
2D forest hover. 0.8-0.9 2.8 0O—0C
quad. 0.9-1.0 1.0-1.2 1.1-14
SDforest —himp | 1.0-11  coco  1.9-2.4
quad. 0.8-1.0 0.9-1.0 1.3-1.6
fifthelement 1 5 1 0909 oo—0o  1.0-1.3

KPIECE and RRT

GAT of BEAST is similar to P-PRM and better than
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Conclusion

Conclusion
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Summary

1. Explicit reasoning about planning effort

Introduction

BEAST 2. Find solutions faster than cost-guided planning
Experiments 3. Continue the transfer of ideas from heuristic graph search
Conclusion to sampling-based motion planning:

B Abstraction-based heuristics
B Explicit estimates of effort
B Online learning for metareasoning
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Questions?

Introduction

BEAST

Experiments

Conclusion

Questions

B Questions?
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Limitation
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B Limitation

B Internal B
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If abstract misses important aspects of the problem,
BEAST may not provide much speed-up

If the problem is very simple, the overhead of forming and
maintaining the abstraction may not be worth the possible
decrease in state propagation and collision checking
Ignore solution cost
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Internal Sampling
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