Planning Under Time Pressure as Decision-making Under Uncertainty

Tianyi Gu

Advisor: Wheeler Ruml

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty – 1 / 34

Introduction

Planning

- Heuristic Search
- Real-time Search
- Overview

Nancy

Data-Driven Nancy

Other Research

Conclusions

planning is a model-based AI method, it models the environment as a state space and finds a sequence of actions that accomplishes some objective

What is Planning?

Introd	luction
muou	uction

Planning

- Heuristic Search
- Real-time Search
- Overview

Nancy

Data-Driven Nancy

Other Research

Conclusions

planning is a model-based AI method, it models the environment as a state space and finds a sequence of actions that accomplishes some objective

one method of planning: heuristic search!

What is Planning?

Introd	luction

Planning

- Heuristic Search
- Real-time Search
- Overview

Nancy

Data-Driven Nancy

Other Research

Conclusions

planning is a model-based AI method, it models the environment as a state space and finds a sequence of actions that accomplishes some objective

one method of planning: heuristic search!

heuristic search:

{states, actions} \rightarrow {V, E}

guide graph search by a heuristic estimate of cost-to-goal

heuristic search associates costs with states, used to guide search

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty - 3 / 34

Introduction	
Planning	
Heuristic Search	
■ Real-time Search	
Overview	
Nancy	
Data-Driven Nancy	

Other Research

Conclusions

A*: expands the node with minimal f value returns optimal path optimal search can take too long! because it must expand every node with $f < C^{*1}$

¹How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.

Introduction Planning Heuristic Search Real-time Search Overview Nancy	A*: expands the node with minimal f value returns optimal path optimal search can take too long! because it must expand every node with $f < C^{*1}$
Data-Driven Nancy	other alternatives to optimal search:
Other Research	anytime search, greedy search
Conclusions	no guarantee faster than A* ²

¹ How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.

²When does Weighted A* Fail, Christopher Wilt and Wheeler Ruml, SoCS, 2012.

Introduction Planning Heuristic Search Real-time Search Overview 	A*: expands the node with minimal f value returns optimal path optimal search can take too long! because it must expand every node with $f < C^{*1}$
Nancy Data-Driven Nancy Other Research Conclusions	other alternatives to optimal search: anytime search, greedy search no guarantee faster than A* ²
	What if we need strong guarantee on responsiveness? real-time heuristic search!

¹How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008. ²When does Weighted A* Fail, Christopher Wilt and Wheeler Ruml, SoCS, 2012.

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty - 5 / 34

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty - 5 / 34

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty – 5 / 34

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty – 5 / 34

Motivation for Real-time Heuristic Search

Introd	uction

- Planning
- Heuristic Search
- Real-time Search
- Overview

Nancy

Data-Driven Nancy

Other Research

Conclusions

Real-time heuristic search:

return the next action within a time bound

Applications:

interacting with humans

- vacuum robot
- siri agent

dynamic environment

 autonomous vehicle inaccurate sensor update model online

Motivation for Real-time Heuristic Search

Introd	uction

Planning

Heuristic Search

Real-time Search

Overview

Nancy

Data-Driven Nancy

Other Research

Conclusions

Real-time heuristic search:

return the next action within a time bound

Applications:

interacting with humans

- vacuum robot
- siri agent

dynamic environment

 autonomous vehicle inaccurate sensor update model online

Overview

Introduction
Planning
Heuristic Search
■ Real-time Search
Overview
Nancy
Nancy Data-Driven Nancy
Nancy Data-Driven Nancy Other Research

Guide search by belief distribution: a better way to plan under time pressure

- The Nancy Framework reconsider real-time search
- Data-Driven Nancy
 - a more flexible model
 - Other Research suboptimal search and robotics

Introduction

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

Real-time Search as Decision-making Under Uncertainty: The Nancy Framework

Tianyi Gu (UNH)

Introduction

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

three phases:

1. Lookahead Phase:

expands nodes with minimum fto explore the search space

Introduction

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

three phases:

1. Lookahead Phase:

expands nodes with minimum f

- to explore the search space
- 2. Decision-making Phase:

backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute

Introduction

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

three phases:

1. Lookahead Phase:

expands nodes with minimum f

- to explore the search space
- 2. Decision-making Phase:

backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute

3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

Introduction

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

three phases:

1. Lookahead Phase:

expands nodes with minimum f

- to explore the search space
- 2. Decision-making Phase:

backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute

3. Learning Phase:

update heuristic values (to escape local minima and avoid infinite loops)

proved to be complete for consistent heuristic

repeat until at a goal

Introduction	
meroduction	

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

three phases:

- 1. Lookahead Phase:
 - expands nodes with minimum f
 - to explore the search space
- 2. Decision-making Phase:
 - backup the minimum f from search frontier ('minimin') select top level action with minimum f to execute
- 3. Learning Phase:

update heuristic values (to escape local minima and avoid infinite loops)

proved to be complete for consistent heuristic

repeat until at a goal

derived from offline search, but optimal for online?

Conclusions

random tree domain (Pemberton & Korf 1995)

f = g + h = g + 0 is lower bound on optimal plan cost

Should an agent at A move to B_1 or B_2 ? $(x_i \text{ are unknown but i.i.d. uniform 0-1})$

decision theory says minimize expected value lower bound: not suitable for rational action selection

Nancy

Should an agent at A move to B_1 or B_2 ? (x_i are unknown but i.i.d. uniform 0-1)

Tianyi Gu (UNH)

Should an agent at A move to B_1 or B_2 ? (x_i are unknown but i.i.d. uniform 0-1)

Lookahead Phase: A Troublesome Example

Lookahead Phase: A Troublesome Example

 \hat{f} is expected value

Should an agent expand nodes under α or β ?

 \hat{f} is not the answer: what to do? want to maximize value of information need to consider uncertainty of estimates

Tianyi Gu (UNH)

Introduction	
Introduction	

Nancy

Decision-making

Lookahead

The Beliefs

Data-Driven Nancy

Other Research

Conclusions

Risk-based lookahead ³:

want to maximize value of information expand nodes which minimize expected regret relies on belief of values

choose expansions that decrease uncertainty in beliefs

³Real-time Planning as Decision-making Under Uncertainty, Andrew Mitchell, Wheeler Ruml, Fabian Spaniol, Joerg Hoffmann, and Marek Petrik, AAAI, 2019.

expand under α or β ?

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

expand under α or β ?

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

expand under α or β ?

need 2 things:

- 1) current beliefs
- 2) estimate of how beliefs might change with search

expand under α or β ?

Tianyi Gu (UNH)

Nancy

Real-time Planning as Decision-making Under Uncertainty -15/34

expand under α or β ?

Nancy

Conclusions

Real-time Planning as Decision-making Under Uncertainty -15/34

expand under α or β ?

Introduction

Nancy

Decision-making

Lookahead

■ The Beliefs

Data-Driven Nancy

Other Research

Conclusions

Tianyi Gu (UNH)

Backup Rules: Nancy

Nancy: parent \leftarrow belief with minimum \hat{f} among successors conveys an entire belief distribution

How to Form The Belief Distribution?

Introduction	Heur
Nancy	
Decision-making	
Lookahead	
■ The Beliefs	
Data-Driven Nancy	
Other Research	
Conclusions	

Heuristic values: scalar \rightarrow probability distribution (belief)

But where do beliefs come from?

Introd	uction
muou	uction

Nancy

- Decision-making
- Lookahead
- The Beliefs

Data-Driven Nancy

Other Research

Conclusions

Heuristic values: scalar \rightarrow probability distribution (belief)

But where do beliefs come from?

Nancy:

truncated Gaussian based on \hat{f} and f, few parameters allows online learning

My work: Data-Driven Nancy⁴:

expressive histogram,

many parameters requires offline learning

⁴Beliefs We Can Believe In: Replacing Assumptions with Data in Real-Time Search, Maximilian Fickert, Tianyi Gu, Leonhard Staut, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, AAAI, 2020.

Introduction

Nancy

Data-Driven Nancy

- Data
- Data Viz

Completeness

Planning

- Search
- Summary

Other Research

Conclusions

Data-Driven Nancy

Tianyi Gu (UNH)

Introd	uction

Nancy

Data-Driven	Nancy

- 🗌 Data
- Data Viz
- Completeness
- Planning
- Search
- Summary
- Other Research

Conclusions

belief: distribution of h^* given features of state (h)

Gathering data:

- run offline suboptimal search on random problems
- collect all visited states
- for each observed \boldsymbol{h} value:

pick most common 200 states from the collection, compute h^*

Example *h** distribution: Sliding Puzzle

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty - 20 / 34

Example h^* distribution: Transport vs Blocks World

What does the actual cost-to-go value uncertainty distribution

Beliefs are different from domain to domain

Tianyi Gu (UNH)

Introduction

Nancy

Data

Data Viz

Planning Search

■ Summary

Conclusions

Real-time Planning as Decision-making Under Uncertainty – 21 / 34

Completeness proof

Introd	uction
mtrou	uction

Nancy

- Data-Driven Nancy
- Data
- ∎ Data Viz
- Completeness
- Planning
- Search
- Summary
- Other Research
- Conclusions

Lemma 1 Under assumptions of goal-awareness and finite state space, if a real-time search algorithm is incomplete, it must have a circulating set S_{\circ} .

Lemma 5 Under our assumptions, a reasonable real-time search algorithm cannot have a circulating set.

Theorem 1 Under our assumptions, a reasonable real-time search algorithm will eventually reach a goal.

Lemma 7 Nancy is a reasonable real-time search algorithm.

Lemma 8 LSS-LRTA* is a reasonable real-time search algorithm.

This proof applies to any LSS-LRTA*-style algorithm: no longer need heuristic consistency!

Mean Solution Cost on Planning Domains

ntroduction	Domain	Lookahead	LSS- LRTA*	Nancy	Nancy (DD)
Data-Driven Nancy					
Data Data Viz		100	46	33	38
Completeness	Blocksw.	300	36	30	34
Planning Search		1000	30	32	27
Summary		100	631	615	496
Other Research	Transport	300	519	559	485
Conclusions	Transport	1000	499	567	422
	Transport	100	48	40	31
	Transport	300	47	30	34
(unit-cost) Elevators (unit-cost)	(unit-cost)	1000	35	29	27
		100	50	35	39
	Elevators	300	32	29	30
	1000	34	27	26	
			1		

Both version of Nancy outperform conventional approach!

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty – 23 / 34

Search Domains

Nancy

Data-Driven Nancy

🗖 Data

Data Viz

Completeness

Planning

Search

■ Summary

Other Research

Conclusions

sliding tile puzzle uniform, heavy ,inverse pancake puzzle different size racetrack reminiscent of autonomous driving

Comparison to IE and MCTS on Classic Search Domains

Comparison to IE and MCTS on Classic Search Domains

40 Pancake

⁵Real-time Planning as Data-driven Decision-making, Maximilian Fickert, Tianyi Gu, Leonhard Staut, Sai Lekyang, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, Bridging the Gap Between AI Planning and Reinforcement Learning (PRL), 2020.

Tianyi Gu (UNH)

Introduction	
Nancy	
Data-Driven Nancy	
Data	
Data Viz	
Completeness	
Planning	
■ Search	
Summary	
Other Research	

Conclusions

- Nancy starts to explore an optimal way of doing online heuristic search
- Nancy outperforms conventional LSS-LRTA* in cost and run time
- Data-driven approach increases robustness
- General completeness proof

More broadly:

- Setting isolates the issue: unlike in MDPs or RL, all uncertainty is due to bounded rationality
- Metareasoning about uncertainty pays off, even for deterministic domains!

Introduction

Nancy

Data-Driven Nancy

Other Research Bounded-Cost

Search

Bounded-

Suboptimal

Search

■ Motion Planning

Robotics

Conclusions

Other Research

Tianyi Gu (UNH)

Introduction

Nancy

Data-Driven Nancy

Other Research Bounded-Cost Search

Bounded-

Suboptimal

Search

Motion Planning

Robotics

Conclusions

distributional methods can also benefit other types of search

bounded-cost search: problem, cost bound \rightarrow find a solution within bound as quickly as possible

Our Approach: Expected Effort Search (XES) ⁶

1. Explicitly estimate the probability of finding a solution within bound p(n)

- 2. estimate total search effort by d(n)
- 3. best first search on expected search effort d(n)/p(n)

⁶Bounded-cost Search Using Estimates of Uncertainty, Maximilian Fickert, Tianyi Gu, and Wheeler Ruml, IJCAI, 2021.

Introduction Nancy Data-Driven Nancy Other Research Bounded-Cost Search Bounded-Suboptimal Search Motion Planning Robotics Conclusions

distributional methods can also benefit other types of search

bounded-cost search: problem, cost bound \rightarrow find a solution within bound as quickly as possible

Our Approach: Expected Effort Search (XES) ⁶ previous algorithms are brittle

XES is now new state-of-the-art!

⁶Bounded-cost Search Using Estimates of Uncertainty, Maximilian Fickert, Tianyi Gu, and Wheeler Ruml, IJCAI, 2021.

Other Research: 2/3 Bounded-Suboptimal Search

Introduction Nancy Data-Driven Nancy Other Research Bounded-Cost Search Bounded-Suboptimal Search Motion Planning Robotics Conclusions

distributional methods can also benefit other types of search

bounded-suboptimal search: problem, suboptimal bound \rightarrow find a solution within bound as quickly as possible

Our Approach: Dynamic Expected Effort Search (DXES) estimates on cost and bound!

distributional methods can also benefit motion planning Motion Planning: find collision-free trajectory for robot Effort-guided planning: Bayesian Effort-Aided Search Tree⁷ - abstract graph

- edge = binomial distribution of online estimate on planning effort

Estimate effort \rightarrow Guide motion tree growth toward easy way

⁷An Effort Bias for Sampling-based Motion Planning, Scott Kiesel, Tianyi Gu, and Wheeler Ruml, IROS, 2017.

distributional methods can also benefit motion planning Motion Planning: find collision-free trajectory for robot Effort-guided planning: Bayesian Effort-Aided Search Tree⁷ - abstract graph

- edge = binomial distribution of online estimate on planning effort

Beast find solution faster than P-PRM and RRT

⁷An Effort Bias for Sampling-based Motion Planning, Scott Kiesel, Tianyi Gu, and Wheeler Ruml, IROS, 2017.

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty – 30 / 34

Introduction

Nancy

Data-Driven Nancy

Other Research Bounded-Cost

Search

Bounded-

Suboptimal

Search

■ Motion Planning

Robotics

Conclusions

Can robot and current available technologies help?

proof-of-concept demo^{8 9} : smart home & lay-user friendly robot

⁸An Adaptive Software Framework for Dementia-care Robots, T Gu, M Begum, N Zhang, D Xu, S Arthanat, and D LaRoche, PlanRob, 2020.

⁹Caregiver Perspectives on A Smart Home-based Socially Assistive Robot for Individuals with Alzheimer's Disease and Related Dementia, S Arthanat, M Begum, T Gu, N Zhang, D Xu, and D LaRoche, Disability and Rehabilitation: Assistive Technology, 2020.

Introduction Nancy Data-Driven Nancy Other Research Bounded-Cost Search Bounded-Suboptimal Search Motion Planning Robotics Conclusions

Can robot and current available technologies help?

proof-of-concept demo^{8 9} : smart home & lay-user friendly robot Community-based Care Provider Caregiver-Care Recipient **Public Connectivity** Home Monitoring & Safety Tele-Health Activities Local Private Network (() . ((1- ~ (1- -Person Al powered with AD SAR House residents

^oAn Adaptive Software Framework for Dementia-care Robots, T Gu, M Begum, N Zhang, D Xu, S Arthanat, and D LaRoche, PlanRob, 2020.

⁹Caregiver Perspectives on A Smart Home-based Socially Assistive Robot for Individuals with Alzheimer's Disease and Related Dementia, S Arthanat, M Begum, T Gu, N Zhang, D Xu, and D LaRoche, Disability and Rehabilitation: Assistive Technology, 2020.

Nancy	proof-of-concept demo ^{8 9} : sn	nart home & lay-user friendly robot
Data-Driven Nancy	Questionnaire 3: Programming an Alerting Protocol	Questionnaire 2: Programming a Reminder Protocol
Other Research	To Prevent Wandering	Medication Intake
Bounded-Cost	This form is to demonstrate how you can set up an <u>alerting</u> protocol for the robot to prevent your family member from wandering outside.	This form is to demonstrate how you can set up a <u>reminder</u> protocol for the robot to help manage your family member's medication.
Search	Please fill in the information below	Please fill in the information below
Bounded-	To prevent your family member from stepping out	For medication intake
Suboptimal	1. What time duration should your family member not go out?	1. What time do you want your family member to take his or her medications?
Search ■ Motion Planning	From: To: 2. Who is the person I should call if your family member does not come back after the	2. Where is the medication bottle kept? e.g. kitchen table
Robotics	Phone:	3. Will the medication bottle get moved from where it is kept usually? □ Yes □ No
Conclusions	3. Should the robot call emergency personnel too? Yes No 4. If yes, how soon after the family member does not come back?minutes 5. If your family member is not back, what is the likely place the emergency personnel need to look for? 6. Is there anyone else you want the robot to call? What is the phone number? Name: Phone: 8 An Adaptive Software Framework for Dementi and D LaRoche, PlanRob, 2020.	What should the robot do if your family member cannot find the medication? Locate the medication in the house and Remind your family member or Call you OR Call you S. How many times you want the robot to remind your family member before calling you and asking you to communicate with the family member? times every minutes Ga-care Robots, T Gu, M Begum, N Zhang, D Xu, S Arthanat,

Caregiver Perspectives on A Smart Home-based Socially Assistive Robot for Individuals with Alzheimer's Disease and Related Dementia, S Arthanat, M Begum, T Gu, N Zhang, D Xu, and D LaRoche, Disability and Rehabilitation: Assistive Technology, 2020.

Real-time Planning as Decision-making Under Uncertainty – 31 / 34

Tianyi Gu (UNH)

Introduction

Nancy

Data-Driven Nancy

Other Research

Conclusions

■ Summary

Conclusions

Tianyi Gu (UNH)

Introduction

Nancy

Data-Driven Nancy

Other Research

Conclusions

Summary

Examples of using distribution to guide search:

- real-time planning: Nancy, DDNancy
- suboptimal search: XES, DXES
- robotics: BEAST, dementia-care robot

Introduction	

Nancy

Data-Driven Nancy

Other Research

Conclusions

Summary

Examples of using distribution to guide search:

- real-time planning: Nancy, DDNancy
- suboptimal search: XES, DXES
- robotics: BEAST, dementia-care robot

Exciting time in AI!

- Planning, RL, ML, Robotics

Introduction	
Introduction	

Nancy

Data-Driven Nancy

Other Research

Conclusions

Summary

Examples of using distribution to guide search:

- real-time planning: Nancy, DDNancy
- suboptimal search: XES, DXES
- robotics: BEAST, dementia-care robot

Exciting time in AI!

- Planning, RL, ML, Robotics

Much work needs to be done!

- data-driven + planning
- statistics + model-based approach

Questions?

Introduction

Nancy

Data-Driven Nancy

Other Research

Conclusions

Questions

Questions?

Tianyi Gu (UNH)

Real-time Planning as Decision-making Under Uncertainty – 34 / 34