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heuristic search:

{states, actions} — {V, E}
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Heuristic Search

. heuristic search associates costs with states,
M Planning used to guide search
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1How Good is Almost Perfect, Malte Helmert and Gabriele Roger, AAAI, 2008.
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A*: expands the node with minimal f value
returns optimal path
optimal search can take too long!
because it must expand every node with f < C*!

other alternatives to optimal search:
anytime search, greedy search
no guarantee faster than A*?

What if we need strong guarantee on responsiveness?

real-time heuristic search!
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online planning: interleaving search and action execution
“receding horizon control”
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Overview

T Guide search by belief distribution:

M Planning a better way to plan under time pressure
B Heuristic Search

B Real-time Search

Nancy B The Nancy Framework
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Other Research B Data-Driven Nancy

Conclusions a more flexible model

B Other Research
suboptimal search and robotics
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Conclusions

select top level action with minimum f to execute
3. Learning Phase:

update heuristic values

(to escape local minima and avoid infinite loops)

proved to be complete for consistent heuristic

repeat until at a goal

derived from offline search, but optimal for online?
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Decision-making Phase: A Troublesome Example
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random tree domain (Pemberton & Korf 1995)

f=g+ h =g+ 0 is lower bound on optimal plan cost
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Conclusions

f Is expected plan cost
f is not the answer: should minimize expected value!
plan under time pressure — bounded rationality
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belief about «

belief about

fe) f(8)

A

f is expected value

Should an agent expand nodes under « or (57

f is not the answer: what to do?
want to maximize value of information
need to consider uncertainty of estimates
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Risk-based Lookahead

Introduction Risk-based lookahead 3:

Nancy want to maximize value of information

B Decision-making . - e .

expand nodes which minimize expected regret

B The Beliefs relies on belief of values

Data-Driven Nancy choose expansions that decrease uncertainty in beliefs

Other Research

Conclusions

3Real—time Planning as Decision-making Under Uncertainty, Andrew Mitchell, Wheeler Ruml, Fabian Spaniol,
Joerg Hoffmann, and Marek Petrik, AAAI, 2019.
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Backup Rules: Nancy
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Nancy:
parent < belief with minimum f among successors
conveys an entire belief distribution
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How to Form The Belief Distribution?

Heuristic values: scalar — probability distribution (belief)
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B Decision-making But where do beliefs come from?
M Lookahead

B The Beliefs

Data-Driven Nancy Nancy: /\
Other Research
Conclusions truncated Gaussian based on fand f, f(n) f(ln)

few parameters allows online learning

My work: Data-Driven Nancy*: - I‘ll
expressive histogram, o -|2<,|| ' II
many parameters requires offline learning

4
Beliefs We Can Believe In: Replacing Assumptions with Data in Real-Time Search, Maximilian Fickert,
Tianyi Gu, Leonhard Staut, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, AAAI, 2020.
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Learning a Model of Heuristic Error

belief: distribution of h* given features of state (h)

Introduction

Nancy

Data-Driven Nancy .

Gathering data:

HD Vi . .

N - run offline suboptimal search on random problems
ompleteness

B Planning - collect all visited states

M Search

B Summary - for each observed h value:

Other Research pick most common 200 states from the collection,

Conclusions Compute h*
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Example h* distribution: Sliding Puzzle
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Example h* distribution: Transport vs Blocks World

What does the actual cost-to-go value uncertainty distribution

Introduction

Nancy look like?
Data-Driven Nancy
. Data B Blocksworld
4 | ™ Transport (unit)
B Completeness
B Planning
B Search 304
M Summary c .

il
Other Research _§

520
Conclusions %
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Beliefs are different from domain to domain
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Completeness proof
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M Data Viz
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Other Research

Conclusions

Lemma 1 Under assumptions of goal-awareness and finite state
space, if a real-time search algorithm is incomplete, it must have
a circulating set S, .

Lemma b5 Under our assumptions, a reasonable real-time search
algorithm cannot have a circulating set.

Theorem 1 Under our assumptions, a reasonable real-time
search algorithm will eventually reach a goal.

Lemma 7 Nancy is a reasonable real-time search algorithm.

Lemma 8 LSS-LRTA* is a reasonable real-time search
algorithm.

This proof applies to any LSS-LRTA*-style algorithm: no longer
need heuristic consistency!
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Mean Solution Cost on Planning Domains

Introduction _ N

Nancy Domain Lookahead LLR%“?A* Nancy (Brg)y
Data-Driven Nancy

= Dot Vi 100 i6 33 33
M Completeness Blocksw. 300 36 30 34
T — 1000 30 32 27
W Summary 100 631 615 496
Qther R_esea“h Transport 300 519 559 485
Conclusions 1000 499 567 422
100 48 40 31
Transport 300 47 30 34
(unit-cost) 1000 35 29 27
Elevators 100 50 35 39
: 300 32 29 30
(unit-cost) 1000 4 27 26

Both version of Nancy outperform conventional approach!
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Search Domains
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B Data Viz
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sliding tile puzzle
uniform, heavy ,inverse
pancake puzzle
different size
racetrack
reminiscent of autonomous driving
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Comparison to IE and MCTS on Classic Search Domains

pancake puzzle
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Comparison to IE and MCTS on Classic Search Domains
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Algorithm Cost - LSS-LRTA* Cost
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40 Pancake

100 300
Node Expansion Limit

Algorithm
IE
Nancy (DD)
Nancy
THTS-WA*
LSS-LRTA*

1000

Nancy outperforms conventional approaches and MCTS?

5Real—time Planning as Data-driven Decision-making, Maximilian Fickert, Tianyi Gu, Leonhard Staut, Sai
Lekyang, Wheeler Ruml, Joerg Hoffmann, and Marek Petrik, Bridging the Gap Between Al Planning and Rein-
forcement Learning (PRL), 2020.
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Summary

B Nancy starts to explore an optimal way of doing online

Introduction

Nancy heuristic search

Data-Driven Nancy B Nancy outperforms conventional LSS-LRTA* in cost and run
M Data .

M Data Viz time

B Completeness B Data-driven approach increases robustness

B Planning G | | f

i B General completeness proo

Other Research

Conclusions More broadly:

B Setting isolates the issue: unlike in MDPs or RL, all
uncertainty is due to bounded rationality

B Metareasoning about uncertainty pays off, even for
deterministic domains!
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Other Research
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Other Research: 1{3 Bounded-Cost Search

Introduction

Nancy

Data-Driven Nancy

Other Research
B Bounded-Cost

Search
B Bounded-
Suboptimal
Search

B Motion Planning
B Robotics

Conclusions

distributional methods can also benefit other types of search

bounded-cost search: problem, cost bound — find a solution
within bound as quickly as possible

Our Approach: Expected Effort Search (XES) ©
1. Explicitly estimate the probability of finding a solution within

bound p(n) .

fn) € f(n)

2. estimate total search effort by d(n)
3. best first search on expected search effort d(n)/p(n)

6Bounded—cost Search Using Estimates of Uncertainty, Maximilian Fickert, Tianyi Gu, and Wheeler Ruml,
IJCAI, 2021.
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Other Research: 1{3 Bounded-Cost Search

distributional methods can also benefit other types of search

Introduction

Nancy bounded-cost search: problem, cost bound — find a solution

Data-Driven Nancy within bound as quickly as possible

Other Research

M Bounded-Cos

Search t Our Approach: Expected Effort Search (XES) ©
B Bounded-

e previous algorithms are brittle

B Motion Planning

# Robotics XES is now new state-of-the-art!

Conclusions

6Bounded—cost Search Using Estimates of Uncertainty, Maximilian Fickert, Tianyi Gu, and Wheeler Ruml,
IJCAI, 2021.
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Other Research: 2{3 Bounded-Suboptimal Search

distributional methods can also benefit other types of search

Introduction

emey bounded-suboptimal search: problem, suboptimal bound —
Data-Driven Naney find a solution within bound as quickly as possible

Other Research

S Our Approach: Dynamic Expected Effort Search (DXES)

M Bounded- .
Sibersttinel estimates on cost and bound!

Search

B Motion Planning
B Robotics

Conclusions
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Other Research: 3/3 Motion Planning

Introduction

Nancy

Data-Driven Nancy

Other Research
B Bounded-Cost
Search

B Bounded-
Suboptimal
Search

B Motion Planning

B Robotics

Conclusions

distributional methods can also benefit motion planning
Motion Planning: find collision-free trajectory for robot
Effort-guided planning: Bayesian Effort-Aided Search Tree’

- abstract graph

- edge = binomial distribution of online estimate on planning
effort

Estimate effort — Guide motion tree growth toward easy way

7An Effort Bias for Sampling-based Motion Planning, Scott Kiesel, Tianyi Gu, and Wheeler Ruml, IROS,
2017.
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distributional methods can also benefit motion planning
Motion Planning: find collision-free trajectory for robot
Effort-guided planning: Bayesian Effort-Aided Search Tree’

- abstract graph

- edge = binomial distribution of online estimate on planning
effort
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\*\/ % e

Beast find solution faster than P-PRM and RRT

7An Effort Bias for Sampling-based Motion Planning, Scott Kiesel, Tianyi Gu, and Wheeler Ruml, IROS,
2017.
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Other Research: Dementia-care Robot

Can robot and current available technologies help?

Introduction

Nancy

proof-of-concept demo® ° : smart home & lay-user friendly robot
Data-Driven Nancy

Other Research
B Bounded-Cost
Search

B Bounded-
Suboptimal
Search

B Motion Planning

Conclusions

8An Adaptive Software Framework for Dementia-care Robots, T Gu, M Begum, N Zhang, D Xu, S Arthanat,
and D LaRoche, PlanRob, 2020.

Caregiver Perspectives on A Smart Home-based Socially Assistive Robot for Individuals with Alzheimer’s
Disease and Related Dementia, S Arthanat, M Begum, T Gu, N Zhang, D Xu, and D LaRoche, Disability and
Rehabilitation: Assistive Technology, 2020.
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Conclusions

Can robot and current available technologies help?

proof-of-concept demo® ° : smart home & lay-user friendly robot

Family Caregivers Community-based Care Providers

D radd

Caregiver-Care Recipient
Public Connectivity

Local Private
Network

/[Home Monitoring & Safety h % / [ Tele-Health Activities]\

Al powered Person

SAR with AD
House residents
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proof-of-concept demo smart home & lay-user friendly robot

Data-Driven Nancy

uestionnaire 3: Programming an Alerting Protocol Questionnaire 2: Programming a Reminder Protocol
Other Research To Prevent Wandering Medication Intake
. B d d C t This form is to demonstrate how you can set up an alerting protocol for the robot This form is to demonstrate how you can set up a reminder protocol for the robot
ounaed-Los to prevent your family member from wandering outside. to help manage your family member’s medication.
Sea I’Ch Please fill in the information below Please fill in the information below
| BOU n d ed_ To prevent your family member from stepping out For medication intake
S u bopti mal 1. What time duration should your family member not go out? 1. What time do you want your family member to take his or her medications?
Sea rCh From: To:
. . 2. Who'is th | should call if famil ber d back after th 2. Where is the medication boltle kept? e.g. kitchen table
A i i r family member n m r
. Motlon P|ann|ng remiﬂdeE:?s e person | should call if your family member does not come back after the
. RObOtICS Name: 3. Wil the medication bottle get moved from where it is kept usually?
Yes
Phone: No
ConCI usions 3. Should the robot call emergency personnel too? 4. What should the robot do if your family member cannot find the medication?
Yes
No Locate the medication in the house and
Remind your family member or
4. If yes, how soon after the family member does not come back? minutes Call you
5. If your family member is not back, what is the likely place the emergency personnel OR
need to look for?
Call you
? i 2
8. Is there anyone else you want the rabot ta call? What Is the phone number? 5. How many times you want the robot to remind your family member before calling
Name: you and asking you to communicate with the family member?
Phone: ____tlimesevery ____ minutes
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Introduction

Conclusions

Exciting time in Al!
- Planning, RL, ML, Robotics

Much work needs to be done!
- data-driven + planning
- statistics + model-based approach
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