
Situated Grid Pathfinding Among Moving Obstacles (extended abstract)

Devin Wild Thomas,1 Tianyi Gu,1 Wheeler Ruml,1 Solomon Eyal Shimony2

1Department of Computer Science, University of New Hampshire, USA
2Department of Computer Science, Ben-Gurion University of the Negev, Israel
devin.thomas@unh.edu, gu@cs.unh.edu, ruml@cs.unh.edu, shimony@bgu.ac.il

Introduction
We present a preliminary study of Situated Pathfinding
Among Moving Obstacles (SPAM-O), in which the objec-
tive is to traverse a grid, reaching the goal as quickly as
possible while avoiding both static and moving obstacles.
Real-time search planning algorithms address this by set-
ting a fixed time bound for the agent to return an incremen-
tal plan. In contrast, in the situated planning problem set-
ting, the agent plans “as the clock ticks” (Cashmore et al.
2018), meaning that time passes whether the agent is mov-
ing, thinking, or waiting. In situated planning, the agent can
plan and execute concurrently, and thus may benefit from
committing to a longer duration action, as that allows more
time to plan (Cserna, Ruml, and Frank 2017). A similar ex-
ample of a situated problem setting is the video game Frog-
ger, in which a vulnerable frog tries to cross a busy roadway.

To address SPAM-O, we examine ideas from real-time
planning and safe interval path planning (SIPP) (Phillips
and Likhachev 2011) and explore which combinations of
methods are most successful for a situated agent. We de-
velop and test a new ‘subinterval’-based method for suc-
cessor generation and state heuristic generalization. We find
that subinterval-based approaches increase the success rate
of situated agents with low to moderate expansion rates, and
that partitioned learning is critical for a successful agent.

SPAM-O
The SPAM-O state space is ⟨x, y, t⟩ where the location
is discrete and time is continuous. The environment con-
tains static and moving obstacles, which are represented
by safe temporal intervals at each grid cell. The actions
are of the form wait and move: waiting for a speci-
fied real-valued amount of time and then optionally mov-
ing to one of the 8 adjacent grid cells. The agent seeks
to minimize goal achievement time: the total time from
when the problem is presented until the agent arrives at
the goal. Actions cost their duration and when the agent
moves it is with a constant speed. A SPAM-O problem
is a 6-tuple: ⟨states ∈ S, safe intervals I(x, y), actions ∈
A, expansion rate E, sstart ∈ S, goal location G⟩. The ex-
pansion rate E is the number of expansions done by the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search algorithm per time unit. The agent has perfect infor-
mation, but its time to look at this information is limited by
the expansion rate E.

SPAM-O is a situated version of the same problem ad-
dressed by SIPP. Safe intervals are constructed by group-
ing all consecutive co-located states into a safe interval at
that location, i ∈ I . This compresses the continuous time
dimension into a compact discrete representation, allowing
optimal solution with A∗ (Phillips and Likhachev 2011),
or sub-optimally with weighted A∗ or focal search variants
(Yakovlev, Andreychuk, and Stern 2020), or anytime algo-
rithms sufficiently fast to be used in soft-real-time on a spe-
cific problem instance (Narayanan, Phillips, and Likhachev
2012).

SIPP and its variants are able to search over a search space
⟨x, y, i⟩ of safe intervals because, when searching offline,
earlier arrival within a safe interval is always at least as good
as any later arrival, as the agent could wait in place to reach
that later state. This is no longer the case when the agent is
situated, as a hasty agent that forgoes extra planning by mov-
ing as quickly as possible into a safe interval may miss out
on opportunities that require more deliberation to recognize.
SPAM-O requires a more sophisticated handling of intervals
to be correct.

We also examine how leading real-time search methods
fare in the similar setting of situated planning. The situ-
ated agent must perform heuristic learning in order to es-
cape local minima; one can back up information from the
search frontier using methods like local search space real-
time A∗(LSS-LRTA∗) (Koenig and Sun 2009), potentially
with separate learning of costs due to static versus dynamic
portions of the environment using partitioned learning real-
time A∗(PLRTA∗) (Cannon, Rose, and Ruml 2014).

Algorithms
We explore three facets of SPAM-O: 1) the successor gen-
eration strategy, which controls which finite subset of the
potentially infinite possible successor states are generated;
2) the heuristic generalization strategy, which controls how
heuristic learning is generalized over related states; and 3)
the heuristic learning strategy, which controls how the agent
propagates heuristic information from the search frontier. In
offline SIPP, facets 2 and 3 do not apply, and the first is
avoided, due to earlier states within a safe interval domi-



nating, allowing search to treat safe intervals as atomic. We
term our problem SPAM-O instead of Situated SIPP to high-
light that SIPP is not the only state space representation one
may use.

The first successor generation strategy, ‘Earliest in Inter-
val’ (EI-n) generates actions by selecting the successor with
the minimum wait, and thus arrives as early in the destina-
tion safe interval as possible. The next n safe intervals of
each adjacent cell are considered, thus EI-∞ is equivalent
to SIPP. The second, ‘Punctual Interval’ (PI-n) generates
actions with as long a wait as possible, while still passing
through the same safe intervals, on the way to the same fron-
tier state as EI-n. PI-n maximizes the time that the agent has
to plan on the way to its child. Both EI-n and PI-n generate
actions consistent with an optimal plan.

A generalization method prescribes which states share
heuristic information. NoGen does no generalization, the
2d-grid of our setting makes it more likely for the agent to
find many paths through the same state. This makes learn-
ing without generalizing more viable than it would be in a
setting where states are unlikely to be re-encountered. Inter-
val Generalization (IGen) stores a single scalar value that is
shared by all the states within each safe interval; this is in-
admissible. Subinterval Generalization (SubGen) represents
heuristic values as a piecewise-linear function of the depar-
ture time from a state. As explained more below, each piece
represents moving to a particular successor during a partic-
ular safe ‘subinterval’ ⟨begin, end , h⟩:

h(t) =


∞ t > end

h begin ≤ t ≤ end
h+ begin− t t < begin

(1)

Our first learning method, NoLearn, does no learning. Our
second is an adaptation of the learning done by LSS-LRTA*.
The third method, PLRTA*, augments LSS-LRTA* by parti-
tioning the h value into a portion due to static obstacles (and
hence generalizable) and dynamic obstacles (unique to an
interval). Any time spent waiting is due to dynamic obsta-
cles, we blithely assume the rest is static. This may result in
learning inadmissible static heuristic values when the search
is forced to avoid a dynamic obstacle; defining an admissible
partitioning scheme for SPAM-O is on-going work.

The information required for PI-n and SubGen
can be tracked using subintervals. For a subinterval
⟨begin, end, h⟩, begin corresponds to the earliest time the
agent can follow the partial plan without additional waiting,
and end corresponds with the deadline to depart while
still following the partial plan. To track subintervals we
propagate them from the search frontier up through the
search tree. A frontier safe interval has a single subinterval
extending from the beginning to the end of the safe interval,
with h the conventional admissible cost-to-go. As we move
up the search tree, the set of subintervals of the parent
is the union of the subintervals of each of its children,
shifted forward in time and up in heuristic cost-to-go by the
duration of the action to move from the parent to the child.
The set of subintervals of each successor interval gives us
the information we need for PI-n, and carries the heuristic
values we need for SubGen.

Figure 1: Experimental results, the solid lines are measured
success rate with the area between the 5th and 95th per-
centile shaded, determined by bootstrapping with n = 1024.

Experiments

To evaluate these methods, we used problem instances gen-
erated by Yakovlev, Andreychuk, and Stern (2020). 500 in-
stances with 150 moving obstacles each were generated on
the rooms static map (see Figure 1 inset). Each generated
moving obstacle’s trajectory avoids prior obstacles. We gen-
erate safe intervals from these instances by calculating when
the circular agent is safe from all the circular obstacles at
each grid point. We avoid collision checking in generating
safe intervals (for an agent moving in a continuous man-
ner), where temporal extents of a safe interval depends on
the direction of movement of the agent. Similar to a Star
Trek transporter beaming our agent from the source to the
destination, we require that both locations be safe for the
duration of the action. Tested configurations were: for suc-
cessor generation: PI-1, PI-3, EI-1, EI-3; for generalization:
PI-n + SubGen, EI-n + IGen, EI-n + NoGen and for learning:
PLRTA*, LSS-LRTA* and NoLEarn.

In Figure 1, we see a low success rate until expansion
rates are high with even the most successful methods, mean-
ing that our benchmark is challenging for a situated agent.
PLRTA* and LSS-LRTA* + IGen can learn the static en-
vironment and outperform methods that do not, such as
NoLearn or LSS-LRTA* + NoGen. This implies that gener-
alizing across states is important for situated agents in envi-
ronments with local minima, such as the rooms map. Finally
we see PI-3 + SubGen + PLRTA* survive significantly more
than other methods at low expansion rates, and PI-1 + Sub-
Gen + PLRTA* agents survive significantly more than those
using other successor generation methods at moderate ex-
pansion rates. This result suggests that, with low expansion
budgets, agents can benefit from using the subinterval based
methods.



Acknowledgements
This research was supported by grant 2019730 from the
United States-Israel Binational Science Foundation (BSF)
and grant 2008594 from the United States National Science
Foundation (NSF).

References
Cannon, J.; Rose, K.; and Ruml, W. 2014. Real-time Motion
Planning with Dynamic Obstacles. AI Communications, 27:
345–362.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal planning while
the clock ticks. In ICAPS-28.
Cserna, B.; Ruml, W.; and Frank, J. 2017. Planning Time to
Think: Metareasoning for On-line Planning with Durative
Actions. In ICAPS-27).
Koenig, S.; and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems, 18(3): 313–341.
Narayanan, V.; Phillips, M.; and Likhachev, M. 2012. Any-
time Safe Interval Path Planning for dynamic environments.
In IROS-2012, 4708–4715.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In ICRA-2011,
5628–5635. IEEE.
Yakovlev, K.; Andreychuk, A.; and Stern, R. 2020. Revis-
iting Bounded-Suboptimal Safe Interval Path Planning. In
ICAPS-30, 300–304. AAAI Press.


